首页 | 本学科首页   官方微博 | 高级检索  
     


Wassertechnische Strategien zur Reduzierung der Trinkwasserbelastung durch Arzneimittelwirkstoffe
Authors:W. Püttmann  F. Keil  J. Oehlmann  U. Schulte-Oehlmann
Affiliation:1. Institut für Atmosph?re und Umwelt, Abteilung Umweltanalytik, Johann Wolfgang Goethe-Universit?t Frankfurt am Main, Altenh?ferallee 1, 60438, Frankfurt am Main, Deutschland
2. Institut für sozial-?kologische Forschung (ISOE) GmbH, Hamburger Allee 45, 60486, Frankfurt am Main, Deutschland
3. Institut für ?kologie, Evolution und Diversit?t, Abteilung Aquatische ?kotoxikologie, Johann Wolfgang Goethe-Universit?t Frankfurt am Main, Siesmayerstrasse 70, 60323, Frankfurt am Main, Deutschland
Abstract:
Results The available research results concerning the application of innovative methods of wastewater and drinking water purification to eliminate pharmaceuticals are summarized in the present paper. An increase of the activated sludge (aerobic sludge) age to 8–10 days in treatment plants can improve the metabolization of less persistent pharmaceutical agents whereas expansion of the sojourn time beyond 10 days will not result in a remarked increase of degradation for most pharmaceutical substances. First results have shown that wastewater treatment plants with integrated membrane bioreactors (MBR) using micro- and ultrafiltration membranes do not provide significantly better results compared to the conventional wastewater treatment plants with respect to the removal of organic micropollutants (including pharmaceutical residues). The use of powdered carbon in biologically treated wastewater is able to reduce pharmaceutical residues up to 80?% in the run-off water. Pilot studies scrutinize the treatment of highly contaminated effluents via catalytic photooxidation. Regarding the suitability of the method to reduce the contamination of drinking and wastewater with pharmaceuticals yet only few data from laboratory scale testing are available. Activated carbon filtration is preferably used for drinking water treatment. Primarily against the background of disinfection, ozonation is widely used for drinking water treatment, but for wastewater treatment the method is still at the experimental stage and will hardly become of practical importance because of high costs. Sustainable wastewater separation is grounded on decentralized concepts by considering material cycles (recycling) at the place of origin. In the long term, separation measures can significantly contribute to declining drug concentrations in drinking water. Regarding the quarrying of drinking water by bank filtration water, river water or artificially enriched ground water, end-of-pipe techniques are vital. Most commonly, activated carbon or activated carbon combined with ozonization is applied and assures a high drinking water quality. Discussion The advantages and disadvantages of the different water treatment methods mainly concern the varying degrees of effectiveness with respect to the elimination of very persistent pharmaceutical agents, the generation of problematical metabolites and additional waste materials, hygienic problems, energy needs and the necessity to employ appropriate technical staff for operation. Although the biodegradation of very persistent drugs cannot be enhanced by an extension of the activated sludge age, this modification should be considered in sewage plants to reduce the contamination with less persistent medical agents. Compared with conventional wastewater treatment, membrane bioreactors provide the advantage of a better control of biological activities on the plant and a comparably small plant size but high investment and operation costs. Additionally, pharmaceuticals such as carbamazepin are only insufficiently removed from wastewater by membrane bioreactors. The regular use of powdered activated carbon in sewage treatment plants would also increase the costs of wastewater treatment and would additionally exclude the further use of sewage sludge in agriculture. Currently, in Germany the further use of sewage sludge is handled differently by the Federal States and discussed controversially. The implementation of ozonation as an additional treatment method in wastewater treatment plants is not realistic because of cost concerns. Additionally, the method produces analytically as yet not assessed metabolites with unknown (eco-)toxicological impacts. For this reason ozonation should currently not be applied unless the reaction products are removed subsequently by filtration through activated carbon. For industrial sewage photooxidation is in a state of testing but an application for municipal wastewater is, up to now, out of question. When river bank filtration is used for the supply of drinking water the use of activated carbon for purification should be essential. The lifetime of the filters is often defined by the filter capacities to eliminate radiocontrast media (e.?g., iopamidole, amidotrizoic acid). Many water supply companies already apply the ozonization prior to activated carbon filtration which supports the elimination of pharmaceuticals from the sewage. The unique developmental potential of the wastewater separation can be seen in the possibility to link up these methods with sustainable exploitation techniques and concepts (re-use of sanitized water, production of fertilizer, compost and biogas). Wastewater separation will not make ‘middle/end-of-pipe’ techniques dispensable but will make their handling more effective because concentrations of pharmaceutical agents are higher in separated effluents compared to those usually found in municipal wastewater, which in mixing sewage systems is even diluted by surface runoff. Conclusions Following today’s state of knowledge activated carbon filtration (eventually coupled with ozonization) is best suited to remove drug residues and other xenobiotics from raw water. Water works that do not apply the activated carbon filtration technique for cleanup of bank filtration water should consider an upgrade. The ozonization is primarily required for disinfection of the water. As no acute health hazard proceeds from drinking water contamination by pharmaceuticals at the present time, the upgrade of wastewater treatment plants by one of the aforementioned innovative methods is currently not required in view of drinking water quality. This offers the opportunity to develop sustainable approaches that already aim to reduce drug contaminations of wastewater and hence of ground-, surface- and drinking water. Recommendations and perspectives On a short- to mid-term perspective enriched sewage of hospitals, nursing homes and other medical facilities should be collected and treated separately. From a technical point of view the conditioning of separated hospital effluents (yellow- and greywater) via activated carbon or membrane filtration is possible but should be combined with disinfection. On a mid- and long-term scale sustainable sanitary concepts based on wastewater separation (black-, grey- and/or rainwater) associated with the recycling of mineral nutrients (nitrogen, phosphorous and potassium) should be realized for development, industry and trade areas, buildings with public lavatories, airports, motorway service areas, and large office and hotel buildings. Strategies focusing primarily on up-grading of municipal wastewater treatment plants are currently existing but the related technologies are largely in a test phase. This is why a particular technique should not be favored at the moment. The combination of various techniques (i.?e., ozonization combined with activated carbon filtration) is known to be very efficient for the removal of pharmaceutical residues from water, but the combination cannot be expected to become of importance in treatment of domestic wastewater because of high costs. Moreover, improvement of wastewater treatment technologies to remove pharmaceutical residues will not make the employment of end-of-pipe techniques in water works redundant and therefore will not lead to saving of expenses.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号