首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进GMM算法的林火烟雾识别研究
引用本文:袁雯雯,姜树海,史晨辉. 基于改进GMM算法的林火烟雾识别研究[J]. 火灾科学, 2019, 28(3): 149-155
作者姓名:袁雯雯  姜树海  史晨辉
作者单位:南京林业大学机械电子工程学院,南京,210037;南京林业大学智能控制与机器人技术研究所,南京,210037;南京林业大学机械电子工程学院,南京,210037;南京林业大学智能控制与机器人技术研究所,南京,210037;南京林业大学机械电子工程学院,南京,210037;南京林业大学智能控制与机器人技术研究所,南京,210037
基金项目:国家公益性行业科研专项重大项目(201404402-03)
摘    要:
针对森林火灾烟雾场景光照突变时传统混合高斯模型(GMM)无法适应的问题,提出基于改进GMM的林火烟雾识别算法。通过六足机器人平台上的CCD摄像机读取当前帧图像,与混合高斯模型建立的前一个背景图像作差分得到变化区域,计算二值化后的变化区域中像素值为1的像素点占总像素点的比例,与设定的阈值相比较从而判别森林火灾场景中的光照是否发生突变。若场景内光照发生突变,采用一个较大的更新速率α,保持模型的稳定性;若场景内光照未发生突变,根据不同的情况自适应调整更新速率α的值,保证模型快速收敛。实验表明,改进的GMM算法可检测到场景中相对完整的动态烟雾区域,满足林火烟雾的检测要求,以期为图像处理在森林火灾巡检机器人上的应用和进一步研究提供参考。

关 键 词:森林火灾烟雾  混合高斯模型  光照突变  更新速率

Forest fire smoke identification algorithm based on improved GMM
YUAN Wenwen,JIANG Shuhai,SHI Chenhui. Forest fire smoke identification algorithm based on improved GMM[J]. Fire Safety Science, 2019, 28(3): 149-155
Authors:YUAN Wenwen  JIANG Shuhai  SHI Chenhui
Affiliation:College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Intelligent Controland Robotics, Nanjing Forestry University, Nanjing 210037, China
Abstract:
In order to solve the problem that the traditional mixed Gaussian model cannot adapt to the sudden changes in the light of the forest fire smoke scene, an improved fire smoke identification algorithm is proposed. The current frame is read by the camera based on the hexapod robot. The difference image between the current frame image and the background image created by the mixed Gaussian model is differentiated to obtain the change area. The ratio of the total pixel points occupied by the pixels with the pixel value 1 is calculated and compared with the threshold value. By comparison, the paper determines whether light mutations occur in forest fire scenes. When a sudden light change occurs suddenly, a large update rate is required to quickly restore the scene to stability. When the light does not change suddenly, the update rate is dynamically adjusted according to different situations to ensure rapid convergence of the model. Experiments show that the improved hybrid Gaussian model algorithm has achieved a good detection effect. It has strong adaptability and robustness in forest fire scenarios, which can meet the real-time detection of forest fire smoke and in order to provide reference for the application and further research of motion detection in forest fire inspection robots.
Keywords:Forest fire smoke   Gaussian mixture model   Light mutation   Update rate
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《火灾科学》浏览原始摘要信息
点击此处可从《火灾科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号