首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A pore-scale investigation of a multiphase porous media system
Authors:Al-Raoush Riyadh I  Willson Clinton S
Institution:Department of Civil and Environmental Engineering, 3418D CEBA, Louisiana State University, Baton Rouge, LA 70803, United States.
Abstract:Pore-scale processes govern fundamental behavior in multiphase porous media systems. A high-resolution, three-dimensional image of the interior of a multiphase porous media system was obtained using synchrotron X-ray tomography. The system was imaged at a resolution of 12.46 mum following entrapment of the nonwetting phase at residual saturation. First, the physically representative network structure of the porous media system is extracted from the void space. This provides a direct mapping of the pore bodies and throats and enables pore-level calculations of coordination numbers, aspect ratios, and pore body and throat correlations. Next, algorithms developed to calculate properties of the entrapped nonwetting phase, such as volume, sphericity, interfacial area, and orientation, are applied to the residual nonwetting phase blobs. Finally, correlations between the pore network structure and nonwetting phase characteristics are examined. As expected, it was found that the nonwetting phase was trapped primarily in the largest pore spaces, the pore bodies with the highest aspect ratios, and the pore bodies with the highest coordination numbers. This work shows that, while there may be limitations related to the ability to capture REV-sized domains for some of the multiphase flow properties and phenomena, high-resolution X-ray tomography is able to provide the high quality datasets needed to observe and quantify the pore-scale phenomena and processes that govern multiphase flow in unconsolidated porous media systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号