首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Global and Regional Distribution of Carbon Monoxide from MOPITT: Seasonal Distribution at 700 hPa
Authors:Sanghee Lee  Gi-Hyuk Choi  Hyo-Suk Lim  Joo-Hee Lee
Institution:Satellite Operation and Application Center, Korea Aerospace Research Institute, Yusung Daejeon, Korea. sanghee@kari.re.kr
Abstract:The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer, which was launched on the Earth Observing System (EOS) Terra satellite in 1999. Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The global and regional distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. This work also revealed that the seasonal cycles for CO are at a maximum in the spring and a minimum in the summer, with average concentrations ranging from 118 to 170 ppbv. The monthly average for CO shows a similar profile to that for O3. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O3 in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O3, which tend to give the apparent summer minimums.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号