首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Creation and preservation of vegetation patterns by grazing
Authors:A Maarten Mouissie  M Emile F Apol  Gerrit W Heil  Rudy van Diggelen  
Institution:aCommunity and Conservation Ecology Group, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands;bDepartment of Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands;cEcosystem Management Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1c, B2610 Antwerp, Belgium;dFaculty of Spatial Sciences, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
Abstract:Structural patterns of tall stands (“tussock”) and short stands (“lawn”) are observed in grazed vegetation throughout the world. Such structural vegetation diversity influences plant and animal diversity. A possible mechanism for the creation and preservation of such patterns is a positive feedback between grazing and plant palatability. Although some theoretical studies have addressed this point in a non-spatial setting, the spatial consequences of this feedback mechanism on the stability and spatial characteristics of vegetation structure patterns have not been studied.We addressed this issue by analyzing a spatially explicit individual-based plant-grazer simulation model, based on published empirical relations and the assumption of optimal foraging.In the model, the selection by the grazer of short stands (that have a higher energy content and are more palatable) is affected by traveling costs and the spatial organization of swards. Nevertheless, the most selected biomass in this type of short stands was the optimal biomass predicted by cropping and digestion constraints. As a result of the optimal foraging strategy, the grazers displayed Lévy-flight traveling behavior during the simulations with characteristic exponent μ ≈ 2.Patterns of short and tall stands created by grazing were preserved for at least a decade. Even in seasonal habitat, the spatial organization of the patterns remained relatively constant, despite fluctuations in the area of short stands. Heterogeneity of initial vegetation increased heterogeneity of the grazing-induced pattern, but did not affect its stability.The area of short stands that was preserved by grazing scaled with the herbivore mass to the power 0.4 and with the carrying capacity of the vegetation to the power −0.75.Patterns of tall and short stands can be created and perpetuated by optimally grazing ruminants, irrespective of possible underlying soil patterns. The simulations generate predictions for the stability and spatial characteristics of such structural vegetation patterns.
Keywords:Functional response  Grazing  Micropatterns  Optimal foraging  Pattern analysis  Ruminants  Scaling laws  Spatially explicit model    vy-flight
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号