首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Advanced Concepts in FGD Technology: The SHU Process with Cooling Tower Discharge
Authors:John Glamser  Michael Eikmeier  Hans-Karl Petzel
Institution:1. Lodge-Cottrell Operations , Dresser Industries, Inc , Houston , Texas , USA;2. Saarberg Holter Umwelltechnik Federal Republic of Germany;3. Saarbergwerke AG , Power Station Volklingen, Federal Republic of Germany
Abstract:The growing awareness of ecological issues in Europe, reinforced by the public debate surrounding acid rain, has led to the enactment of laws and regulations in West Germany relating to emissions from large coal fired combustors.

Flue gas desulfurization (FGD) units have been compulsory for new coal fired power plants in West Germany for about 12 years. The new legislation enacted in 1983, to be met by the middle of 1988, applies not only to new plants but, unlike in the United States, also to. existing power plants (>30MW).

The law currently specifies a residual SO2 emission level of 400 mg/Nm3 (0.311b MM/BTU) for large power plants (>100 MW), but a level of 200 mg/Nm3 (0.15 lb MM/BTU) is already under discussion in some cases. The legally binding emission standards stipulate that none of the daily averages, calculated on the basis of half hour averages may exceed the concentration allowed. SO2 removal efficiencies of 90 percent to 95 percent are normally provided. Since 1983, more than 35,000 MW of retrofit FGD units have been installed in Germany to meet this SO2 standard.

The regulations also do not allow for the ponding of calcium sulfite scrubber sludge, but stipulate the production of gypsum from limestone slurry processes. Additionally the regulations require flue gases to have a minimum temperature in the stack of 72° C (162°F) after desulfurization. Treated flue gases do not have to be reheated if discharged via a cooling tower.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号