摘 要: | 矿山微震事件集群是分析矿震的重要参考之一,其准确的划分对矿山微震分布特征和微震活动分析具有重要作用。提出了1种基于局部离群因子(Local Outlier Factor,LOF)的K-means聚类算法并构建了综合SSE评价指标和模型,通过LOF算法检测异常微震事件和选取初始聚类中心,利用Krzanowski-Lai指数确定最佳聚类分组数;采用模拟计算比较了不同数据集大小的聚类效果。结果表明:基于LOF的K-means聚类方法评分最高,聚类结果最好;并利用该聚类方法分析用沙坝矿1649个微震事件的分布特征与微震活动性。实例表明,K=7为最佳聚类分组数,聚类簇的划分受断层滑移和矿山生产活动的影响。
|