首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater
Authors:Jun Li  Wentao Li  Gan Luo  Yan Li  Aimin Li
Institution:1. State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China2. Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, China
Abstract: Less than 50 mg/L nitrobenzene brought little effect on anaerobic sulfate reduction. Kinetics of sulfate reduction under different nitrobenzene contents was studied. Increased nitrobenzene contents greatly changed the bacterial community structure. Genus Desulfovibrio played the key role in anaerobic sulfate reduction process. Nitrobenzene (NB) is frequently found in wastewaters containing sulfate and may affect biological sulfate reduction process, but information is limited on the responses of sulfate reduction efficiency and microbial community to the increased NB contents. In this study, a laboratory-scale expanded granular sludge bed reactor was operated continuously to treat high-sulfate organic wastewater with increased NB contents. Results successfully demonstrated that the presence of more than 50 mg/L NB depressed sulfate reduction and such inhibition was partly reversible. Bath experiments showed that the maximum specific desulfuration activity (SDA) decreased from 135.80 mg SO42?/gVSS/d to 30.78 mg SO42?/gVSS/d when the NB contents increased from none to 400 mg/L. High-throughput sequencing showed that NB also greatly affected bacterial community structure. Bacteroidetes dominated in the bioreactor. The abundance of Proteobacteria increased with NB addition while Firmicutes presented an opposite trend. Proteobacteria gradually replaced Firmicutes for the dominance in response to the increase of influent NB concentrations. The genus Desulfovibrio was the dominant sulfate-reducing bacteria (SRB) with absence or presence of NB, but was inhibited under high content of NB. The results provided better understanding for the biological sulfate reduction under NB stress.
Keywords:Nitrobenzene (NB)  Sulfate-reducing bacteria (SRB)  Bacterial community  Sulfate reduction  High-throughput sequencing  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号