首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community
Authors:Wanqi Qi  Weiying Li  Junpeng Zhang  Xuan Wu  Jie Zhang  Wei Zhang
Institution:1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China2. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China3. Chengdu Chuanli Intelligence Fluid Equipment Co., Ltd., Chengdu 611530, China
Abstract: We studied BAC biofilm during the process of initial operation and backwash. Microbial diversity decreased gradually with the increase of BAC filter depth. Proteobacteria dominated at the phylum level among the BAC biofilm samples. α-proteobacteria increased about 10% in all carbon filter depth after backwash. The biological activated carbon (BAC) is a popular advanced water treatment to the provision of safe water supply. A bench-scale device was designed to gain a better insight into microbial diversity and community structure of BAC biofilm by using high-throughput sequencing method. Both samples of BAC biofilm (the first, third and fifth month) and water (inlet water and outlet water of carbon filter, outlet water of backwashing) were analyzed to evaluate the impact of carbon filter depth, running time and backwash process. The results showed that the microbial diversity of biofilm decreased generally with the increase of carbon filter depth and biofilm reached a steady-state at the top layer of BAC after three months’ running. Proteobacteria (71.02%–95.61%) was found to be dominant bacteria both in biofilms and water samples. As one of opportunistic pathogen, the Pseudomonas aeruginosa in the outlet water of device (1.20%) was about eight times higher than that in the inlet water of device (0.16%) at the genus level after five-month operation. To maintain the safety of drinking water, the backwash used in this test could significantly remove Sphingobacteria (from 8.69% to 5.09%, p<0.05) of carbon biofilm. After backwashing, the operational taxonomic units (OTUs) number and the Shannon index decreased significantly (p<0.05) at the bottom of carbon column and we found the Proteobacteria increased by about 10% in all biofilm samples from different filter depth. This study reveals the transformation of BAC biofilm with the impact of running time and backwashing.
Keywords:Biological activated carbon  Biofilm  Community structure  Carbon filter depth  High-throughput sequencing  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号