首页 | 本学科首页   官方微博 | 高级检索  
     

程海流域非点源污染负荷估算及其控制对策
引用本文:陈学凯,刘晓波,彭文启,董飞,黄智华,冯顺新,王若男. 程海流域非点源污染负荷估算及其控制对策[J]. 环境科学, 2018, 39(1): 77-88
作者姓名:陈学凯  刘晓波  彭文启  董飞  黄智华  冯顺新  王若男
作者单位:中国水利水电科学研究院水环境研究所, 北京 100038;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038,中国水利水电科学研究院水环境研究所, 北京 100038;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038,中国水利水电科学研究院水环境研究所, 北京 100038;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038,中国水利水电科学研究院水环境研究所, 北京 100038;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038,中国水利水电科学研究院水环境研究所, 北京 100038;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038,中国水利水电科学研究院水环境研究所, 北京 100038;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038,中国水利水电科学研究院水环境研究所, 北京 100038;河海大学水文水资源学院, 南京 210098;中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038
摘    要:
计算流域非点源氮磷污染负荷并以此开展源解析对于寻求水体污染控制最佳管理措施具有重要意义.通过对经典的Johnes输出系数模型进行改进,考虑了降水、坡度以及污染源与水体之间距离等因素,建立了一套在资料缺乏情况下,适用于受地形、降水影响较大的高原湖泊地区的非点源污染负荷评估方法.选取云南省九大高原湖泊之一的程海作为研究对象,验证了改进输出系数模型的合理性,并对流域溶解态氮磷入湖污染负荷进行了全面的分析.结果表明:(1)2014年,程海流域溶解态氮磷入湖负荷分别是158.48 t·a~(-1)和24.70 t·a~(-1),且二者空间分布相似;(2)在土地利用方面,农业用地对溶解态氮磷入湖污染负荷贡献最大,分别是46.19%和48.16%;(3)畜禽养殖和农村生活是溶解态氮磷入湖污染负荷治理的优先控制污染源,南岸是溶解态氮磷入湖污染负荷重点治理区域;(4)若实行农村生活和畜禽养殖、化肥流失及土地利用治理,可使溶解态氮磷入湖污染负荷分别减少38.47%和40.76%.研究成果可为缺乏资料的高原湖泊地区非点源污染治理提供科学的理论依据.

关 键 词:非点源污染  程海流域      输出系数模型
收稿时间:2017-05-08
修稿时间:2017-07-06

Estimation of and Control Strategies for Pollution Loads from Non-point Sources in the Chenghai Watershed
CHEN Xue-kai,LIU Xiao-bo,PENG Wen-qi,DONG Fei,HUANG Zhi-hu,FENG Shun-xin and WANG Ruo-nan. Estimation of and Control Strategies for Pollution Loads from Non-point Sources in the Chenghai Watershed[J]. Chinese Journal of Environmental Science, 2018, 39(1): 77-88
Authors:CHEN Xue-kai  LIU Xiao-bo  PENG Wen-qi  DONG Fei  HUANG Zhi-hu  FENG Shun-xin  WANG Ruo-nan
Affiliation:Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China and Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Abstract:
The calculation of non-point source (NPS) pollutant loads of nitrogen and phosphorus is the key step in preparing a pollution control plan. This study modified the export coefficient model by taking into account the precipitation, slope, distance between pollution sources and water bodies, and other relevant factors. The NPS pollution load assessment method established in this study can be applied to data-scarce basins and is suitable for plateau lake regions affected by terrain and precipitation. In this study, Chenghai Lake, which belongs to one of the nine major plateau lakes in Yunnan Province, is selected for the case study. This study first verifies the rationality of the improved export coefficient model based on actual observed values, and then utilizes the improved export coefficient model to assess the loads of dissolved nitrogen (DN) and dissolved phosphorus (DP) pollution. As indicated by the results, in 2014, the loads of DN and DP into Chenghai Lake are 158.48 t·a-1 and 24.70 t·a-1, respectively. The maximum contributions of DN and DP pollution load into Chenghai Lake are from agricultural cultivated land are 46.19% and 48.16%, respectively, in terms of land use. The results present a relatively consistent spatial distribution of DN and DP that indicates that the south bank is a key area for governance. Livestock and rural living are the main pollution sources influencing the load of DN and DP into Chenghai Lake and should be prioritized for control. If the pollution from rural living, livestock, fertilizer loss, and land use can be effectively controlled, the load of DN and DP into Chenghai Lake will be decreased by a maximum of 38.47% and 40.76%, respectively. The results of this study suggest that the improved export coefficient model can be applied for study of the NPS pollution assessment of plateau lake regions and can provide a theoretical basis for the NPS pollution control of the Chenghai Lake basin.
Keywords:non-point source  Chenghai watershed  nitrogen  phosphorus  export coefficient model
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号