首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contributions of adsorption,bioreduction and desorption to uranium immobilization by extracellular polymeric substances
Authors:Chen Zhou  Ermias Gebrekrstos Tesfamariam  Youneng Tang  Ang Li
Institution:1. Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85281, USA2. Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA3. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
Abstract: ● EPS immobilizes U(VI) via adsorption, bioreduction and desorption. ● This work provides a framework to quantify the three immobilization processes. ● The non-equilibrium adsorption of U follows pseudo-second-order kinetics. ● The equilibrium adsorption of U followed Langmuir and Freundlich isotherms. Hexavalent uranium (U(VI)) can be immobilized by various microbes. The role of extracellular polymeric substances (EPS) in U(VI) immobilization has not been quantified. This work provides a model framework to quantify the contributions of three processes involved in EPS-mediated U(VI) immobilization: adsorption, bioreduction and desorption. Loosely associated EPS was extracted from a pure bacterial strain, Klebsiella sp. J1, and then exposed to H2 and O2 (no bioreduction control) to immobilize U(VI) in batch experiments. U(VI) immobilization was faster when exposed to H2 than O2 and stabilized at 94% for H2 and 85% for O2, respectively. The non-equilibrium data from the H2 experiments were best simulated by a kinetic model consisting of pseudo-second-order adsorption (ka = 2.87 × 10?3 g EPS·(mg U)?1·min?1), first-order bioreduction (kb = 0.112 min?1) and first-order desorption (kd = 7.00 × 10?3 min?1) and fitted the experimental data with R2 of 0.999. While adsorption was dominant in the first minute of the experiments with H2, bioreduction was dominant from the second minute to the 50th min. After 50 min, adsorption was negligible, and bioreduction was balanced by desorption. This work also provides the first set of equilibrium data for U(VI) adsorption by EPS alone. The equilibrium experiments with O2 were well simulated by both the Langmuir isotherm and the Freundlich isotherm, suggesting multiple mechanisms involved in the interactions between U(VI) and EPS. The thermodynamic study indicated that the adsorption of U(VI) onto EPS was endothermic, spontaneous and favorable at higher temperatures.
Keywords:Adsorption  Bioreduction  Desorption  Kinetics  Isotherm  Uranium  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号