首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of irrigation,fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China
Authors:Chunyan Liu  Kai Wang  Shixie Meng  Xunhua Zheng  Zaixing Zhou  Shenghui Han  Deli Chen  Zhiping Yang
Institution:1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:One-year winter wheat–summer maize rotation is the most popular double cropping system in north-central China, and this highly productive system is an important source of nitrous oxide (N2O) and nitric oxide (NO) emissions due to the high fertilizer N and irrigation water inputs. To sustain the high crop production and mitigate the detrimental impacts of N2O and NO emissions, improved management practices are extensively applied. The aim of this study is therefore to evaluate the effects of an improved management practice of irrigation, fertilization and crop straw on grain yield and N2O and NO emissions for a wheat–maize rotation field in northern China. Using automated and manual chamber measuring systems, we monitored N2O and NO fluxes for the conventional (CT, 2007–2008), improved (IT, 2007–2008), straw-amended (WS, 2008–2009), straw-not-amended (NS, 2008–2009), and no N-fertilizer treatments (WS–NN, 2008–2009), respectively, for one rotation-year. The grain yields were determined for CT and IT for three rotation-years (2005–2008) and for WS, NS and WS–NN for one rotation-year (2008–2009). The improved management of irrigation and fertilization reduced the annual N fertilization rate and irrigation amount by 17% and 30%, respectively; increased the maize yield by 7–14%; and significantly decreased the N2O and NO emissions by 7% (p < 0.05) and 29% (p < 0.01), respectively. The incorporation of wheat straw increased the cumulative N2O and NO emissions in the following maize season by 58% (p < 0.01) and 13%, respectively, whereas the effects of maize straw application were not remarkable. The N2O and NO emission factors of applied N were 2.32 ± 2.32% and 0.42 ± 1.69% for wheat straw and 0.67 ± 0.23% and 0.54 ± 0.15% for chemical N-fertilizers, respectively. Compared to conventional management practices using high application rates of irrigation water and chemical N-fertilizer as well as the field burning of crop straw, the improved management strategy presented here has obvious environmentally positive effects on grain yield and mitigation of N2O and NO emissions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号