首页 | 本学科首页   官方微博 | 高级检索  
     

改进的QGA-BP模型在弥苴河总氮量预测中的应用
引用本文:龙华, 赵继东, 王晓东, 杜庆治, 胡婷, 邵玉斌. 改进的QGA-BP模型在弥苴河总氮量预测中的应用[J]. 环境工程学报, 2016, 10(11): 6099-6105. doi: 10.12030/j.cjee.201506066
作者姓名:龙华  赵继东  王晓东  杜庆治  胡婷  邵玉斌
作者单位:1. 昆明理工大学信息工程与自动化学院, 昆明 650504
基金项目:云南省科技厅科技惠民项目(2014RA051) 云南省科技厅面上项目(2013FZ010)
摘    要:
水质预测对水环境规划、评价和管理十分重要。构建一种改进的量子遗传算法(QGA)优化BP神经网络的模型,即在量子遗传算法中引入了旋转角的动态改进策略和遗传算法的交叉变异操作,并以改进的QGA作为进化操作准则优化BP模型的权值和阈值。以弥苴河复杂水环境水质预测为实例,选取一组历史观测数据作为训练样本,对其进行分析。将结果与BP模型、QGA-BP模型仿真结果进行了对比,改进后的QGA-BP模型在进化代数、收敛速度和预测结果的准确率有较大提高。对弥苴河水质的预测结果表明,将改进QGA-BP模型用于水质预测是可行、有效的预测方法。

关 键 词:量子遗传算法   BP神经网络   量子交叉变异   水质预测
收稿时间:2015-07-14

Application research on total nitrogen content forecast of River Miju with improved QGA-BP model
LONG Hua, ZHAO Jidong, WANG Xiaodong, DU Qingzhi, HU Ting, SHAO Yubin. Application research on total nitrogen content forecast of River Miju with improved QGA-BP model[J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6099-6105. doi: 10.12030/j.cjee.201506066
Authors:LONG Hua  ZHAO Jidong  WANG Xiaodong  DU Qingzhi  HU Ting  SHAO Yubin
Affiliation:1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
Abstract:
Water quality prediction is imperative to the planning, assessment, and management of the water environment. A model of a BP neural network optimized by an improved quantum genetic algorithm (QGA) was constructed. Further, a dynamically improving strategy of the rotating angle and a cross variation operation of the genetic algorithm were introduced into the QGA. The improved QGA was adopted as the standard of evolutionary operation to optimize the weight value and the threshold value of the BP model. Taking the water quality prediction of the complicated water environment of River Miju as an example, we analyzed a set of historic observation data selected as the training sample. The results were compared with the simulation results of the BP model and the QGA-BP model, and the improved QGA-BP model showed considerable improvement in terms of the accuracy rates of evolutionary algebra, convergence rate, and prediction result. The water quality prediction results for River Mi Ju suggested that the application of the improved QGA-BP model to water quality prediction is feasible and effective.
Keywords:quantum genetic algorithm  BP neural network  quantum cross variation  water quality prediction
本文献已被 CNKI 等数据库收录!
点击此处可从《环境工程学报》浏览原始摘要信息
点击此处可从《环境工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号