首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phytotoxicity and phytoremediation of 2,6-dinitrotoluene using a model plant, Arabidopsis thaliana
Authors:Yoon Jong Moon  Oliver David J  Shanks Jacqueline V
Institution:Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
Abstract:Biochemical and genetic studies of xenobiotic metabolism in the model plant Arabidopsis have significant potential in providing information for phytoremediation. This paper presents the toxicity of 2,6-dinitrotoluene (2,6-DNT) to Arabidopsis under axenic conditions, the fate and transformation of 2,6-DNT after uptake by the plant, and the effect of a putative glutathione S-transferase (GST), which is highly induced by 2,4,6-trinitrotoluene (TNT) in the previous study, on the detoxification of 2,6-DNT. 2,6-DNT had toxic effects on the growth of Arabidopsis based on whole seedling as well as root growth assays. Using U- 14C]2,6-DNT, the recovery was over 87% and less than 2% accounted for the mineralization of 2,6-DNT in axenic liquid cultures during the 14d of exposure. About half (48.3%) of the intracellular radioactivity was located in the root tissues in non-sterile hydroponic cultures. 2-Amino-6-nitrotoluene (2A6NT) and two unknown metabolites were produced as transformation products of 2,6-DNT in the liquid media. The metabolites were further characterized by proton NMR spectra and the UV-chromatograms when the plant was fed with either 2,6-DNT or 2A6NT. In addition, polar unknown metabolites were detected at short retention times from radiochromatograms of plant tissue extracts. The GST gene of the wild-type of Arabidopsis in response to 2,6-DNT was induced by 4.7-fold. However, the uptake rates and the tolerance at different concentrations of 2,6-DNT and TNT were not significantly different between the wild-type and the gst mutant indicating that induction of the GST gene is not related to the detoxification of 2,6-DNT.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号