首页 | 本学科首页   官方微博 | 高级检索  
     


Interactive effects of prey and p,p'-DDE on burrowing owl population dynamics.
Authors:Jennifer A Gervais  Christine M Hunter  Robert G Anthony
Affiliation:Department of Forest, Range, and Wildlife Sciences, Utah State University, Logan, Utah 84322-5230, USA. jennifer.gervais@oregonstate.edu
Abstract:We used population models to explore the effects of the organochlorine contaminant p,p'-DDE and fluctuations in vole availability on the population dynamics of Burrowing Owls (Athene cunicularia). Previous work indicated an interaction between low biomass of voles in the diet and moderate levels of p,p'-DDE in Burrowing Owl eggs that led to reproductive impairment. We constructed periodic and stochastic matrix models that incorporated three vole population states observed in the field: average, peak, and crash years. We modeled varying frequencies of vole crash years and a range of impairment of owl demographic rates in vole crash years. Vole availability had a greater impact on owl population growth rate than did reproductive impairment if vole populations peaked and crashed frequently. However, this difference disappeared as the frequency of vole crash years declined to once per decade. Fecundity, the demographic rate most affected by p,p'-DDE, had less impact on population growth rate than adult or juvenile survival. A life table response experiment of time-invariant matrices for average, peak, and crash vole conditions showed that low population growth under vole crash conditions was due to low adult and juvenile survival rates, whereas the extremely high population growth under vole peak conditions was due to increased fecundity. Our results suggest that even simple models can provide useful insights into complex ecological interactions. This is particularly valuable when temporal or spatial scales preclude manipulative experimental work in the field or laboratory.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号