首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ELEVATED ATMOSPHERIC CO2 INCREASES WATER AVAILABILITY IN A WATER-LIMITED GRASSLAND ECOSYSTEM1
Authors:Arthur L Fredeen  James T Randerson  N Michele Holbrook  Christopher B Field
Abstract:ABSTRACT: Californian annual grassland on sandstone (moderately fertile) and serpentine (very infertile) soils at the Jasper Ridge Biological Preserve, Stanford, California, were exposed to ambient or elevated (ambient + 36 Pa CO2) atmospheric CO2 in open-top chambers since December 1991. We measured ecosystem evapotranspiration with open gas-exchange systems, and soil moisture with time-domain reflectometry (TDR) over 0–15 cm (serpentine) and 0–30 cm (sandstone) depths, at times of peak above ground physiological activity. Evapotranspiration decreased by 12 to 63 percent under elevated CO2 in three consecutive years in the sandstone ecosystem (p = 0.053, p = 0.162, p = 0.082 in 1992, 1993, and 1994, respectively). In correspondence with decreased evapotranspiration, late-season soil moisture reserves in the sandstone were extended temporally by 10 ± 3 days in 1993 and by 28 ± 11 days in 1994. The effect of elevated CO2 on soil moisture was greater in the drier spring of 1994 (419 mm annual rainfall) than in 1993 (905 mm annual rainfall). In the serpentine ecosystem, evapotranspiration and soil moisture reserves were not clearly affected by elevated CO2. Soil water may be conserved in drought-affected ecosystems exposed to elevated CO2, but the amount of conservation appears to depend on the relative importance of transpiration and soil evaporation in controlling water flux.
Keywords:elevated CO2: annual grassland  evapotranspiration  soil moisture  water-use efficiency  time-domain reflectometry)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号