首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reduction of dinitrotoluene sulfonates in TNT red water using nanoscale zerovalent iron particles
Authors:Shi-Ni Zhu  Guo-hua Liu  Zhengfang Ye  Quanlin Zhao  Ying Xu
Institution:Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
Abstract:

Purpose

This research was designed to investigate the feasibility of converting the dinitrotoluene sulfonates (DNTS) in TNT red water into the corresponding aromatic amino compounds using nanoscale zerovalent iron (NZVI).

Methods

NZVI particles were simultaneously synthesized and stabilized by sodium borohydride reduction in a nondeoxygenated system. The morphology, elemental content, specific surface area, and crystal properties of the NZVI were characterized before and after the reaction by environmental scanning electron microscope; energy dispersive X-ray; Brunauer, Emmett, and Teller; and X-ray diffraction, respectively. The reduction process was conducted at pH?=?6.3 at ambient temperature. The efficiency of the NZVI-mediated DNTS reduction process was monitored by HPLC, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses.

Results

The properties of the NZVI particles prepared were found to be similar to those obtained through oxygen-free preparation and inert stabilization processes. Both 2,4-DNT-3-sulfonate (2,220?mg?L?1) and 2,4-DNT-5-sulfonate (3,270?mg?L?1) in TNT red water underwent a pseudo-first-order transformation when mixed with NZVI at room temperature and near-neutral pH. Their observed rate constants were 0.11 and 0.30?min?1, respectively. Within 1?h of processing, more than 99% of DNTS was converted by NZVI-mediated reduction into the corresponding diaminotoluene sulfonates.

Conclusions

NZVI can be simultaneously prepared and stabilized in a nondeoxygenated system. NZVI reduction is a highly efficient method for the conversion of DNTS into the corresponding diaminotoluene sulfonates under near-neutral pH conditions. Therefore, NZVI reduction may be useful in the treatment of TNT red water and subsequent recovery of diaminotoluene from explosive wastewater.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号