首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling the effects of water diversion and combined sewer overflow on urban inland river quality
Authors:Xianyong Gu  Zhenliang Liao  Guangqian Zhang  Jiaqiang Xie  Jin Zhang
Affiliation:1.Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering,Tongji University,Shanghai,China;2.Institute of Urban Water Management,Technische Universit?t Dresden,Dresden,Germany
Abstract:In order to assist and optimize the operation of a clean water diversion project for the medium-sized inland rivers in Chaohu, China, an integrated hydrodynamic and water quality model was used in this study. Sixteen diversion scenarios and five sewage interception scenarios were defined to assess the improvement of water quality parameters including ammonia nitrogen (NH3-N), total phosphorus (TP) and chemical oxygen demand (COD) under different diverted water flows, diverting times, diverting points, diverting routines and sewage interception proportions. An index of pollutant removal rate per unit diverted water flow (PRUWF) was proposed to evaluate the effect of the clean water diversion. Results show that operating conditions played important roles in water quality improvement of medium-sized inland rivers. The optimal clean water diversion was operated under the conditions of a flow rate of 5 m3/s for 48 h with an additional constructed bridge sluice. A global sensitivity analysis using the Latin Hypercube One-Factor-at-a-Time (LH-OAT) method was conducted to distinguish the contributions of various driving forces to inland river water restoration. Results show that sewage interception was more important than diverted water flow and diverting time with respect to water quality improvement, especially for COD.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号