首页 | 本学科首页   官方微博 | 高级检索  
     


Nitrite formation and nitrous oxide emissions as affected by reclaimed effluent application
Authors:Master Y  Laughlin R J  Stevens R J  Shaviv A
Affiliation:Faculty of Agricultural Engineering, Technion-IIT, Haifa 32000, Israel. master@tx.technion.ac.il
Abstract:
The effect of irrigation with reclaimed effluent (RE) (after secondary treatment) on the mechanisms and rates of nitrite formation, N2O emissions, and N mineralization is not well known. Grumosol (Chromoxerert) soil was incubated for 10 to 14 d with fresh water (FW) and RE treated with 15NO3- and 15NH4+ to provide a better insight on N transformations in RE-irrigated soil. Nitrite levels in RE-irrigated soil were one order of magnitude higher than in FW- irrigated soil and ranged between 15 to 30 mg N kg(-1) soil. Higher levels of NO2- were observed at a moisture content of 60% than at 70% and 40% w/w. Nitrite levels were also higher when RE was applied to a relatively dry Grumosol (20% w/w) than at subsequent applications of RE to soil at 40% w/w. Isotopic labeling indicated that the majority of NO2 was formed via nitrification. The amount of N2O emitted from RE-treated Grumosol was double the amount emitted from FW treatments at 60% w/w. Nitrification was responsible for about 42% of the emissions. The N20 emission from the RE-treated bulk soil (passing a 9.5-mm sieve) was more than double the amount formed in large aggregates (4.76-9.5 mm in diameter). No dinitrogen was detected under the experimental conditions. Results indicate that irrigation with secondary RE stimulates nitrification, which may enhance NO3 leaching losses. This could possibly be a consequence of long-term exposure of the nitrifier population to RE irrigation. Average gross nitrification rate estimates were 11.3 and 15.8 mg N kg(-1) soil d(-1) for FW- and RE-irrigated bulk soils, respectively. Average gross mineralization rate estimates were about 3 mg N kg(-1) soil d(-1) for the two water types.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号