首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A box model of carrying capacity for suspended mussel aquaculture in Lagune de la Grande-Entrée,Iles-de-la-Madeleine,Québec
Institution:1. Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4J1 Canada;2. Institut des Sciences de la Mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, PQ, G5L 3A1 Canada;3. Institut français de recherche pour l’exploitation de la mer (IFREMER), Brest Centre, Coastal Ecology Department, BP 70, 29280 Plouzané, France;4. Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 3J5 Canada;1. Normandie Université UNICAEN, UMR BOREA (MNHN, UPMC, CNRS-7208, IRD-207), CS 14032, 14000 Caen, France;2. Normandie Université UNICAEN, UMR M2C (UCBN, UR, CNRS-6143), 24 rue des Tilleuls, 14000 Caen Cedex, France;3. IRSTEA, UR EABX (Aquatic Ecosystems and Global Changes), 50 avenue de Verdun, 33612 Cestas Cedex, France;4. IFREMER, avenue du Général de Gaulle, 14520 Port-en-Bessin, France;5. Groupement d’Intérêt Public “Seine-Aval”, 115 boulevard de l’Europe, 76100 Rouen, France;6. IFREMER, Laboratoire Ressources Halieutiques, 150 quai Gambetta, BP 699, 62321 Boulogne sur Mer, France;7. IFREMER, Fisheries Ecology and Modeling Department, 44311 Nantes Cedex 3, France;8. IFREMER, Laboratoire de Biologie Halieutique, Pointe du Diable, BP 70, 29280 Plouzané, France;1. College of Fisheries, Ocean University of China, Qingdao 266003, China;2. School of Marine Sciences, University of Maine, Orono, ME 04469, USA;3. Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;1. IRSTEA, UR EABX, Aquatic Ecosystems and Global Changes, 50 avenue de Verdun, 33612 Cestas cedex, France;2. CNRS, UMR 7208 BOREA, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032 Caen cedex 5, France;3. Cooperative Institute for Marine and Atmospheric Studies, University of Miami Rosenstiel School of Marine and Atmospheric Science, NOAA Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149, United States;4. Littoral Environnement et Sociétés, UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle cedex, France;5. UMR 6249 Laboratoire Chrono-Environnement, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbeliard cedex, France;6. Laboratoire de Cytologie Végétale et Phytoplanctonologie, Département des Sciences de la Vie, Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Bizerte, Tunisia;1. Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, 6140, South Africa;2. CSIRO Oceans and Atmosphere, Hobart, Tasmania, 7001, Australia;1. São Paulo State Agency for Agribusiness Technology (APTA) at Jaú, CP 66 Jaú, SP CEP 17.340.000, Brazil;2. Fish Biology and Ecology Laboratory, Biosciences Institute, São Paulo State University at Botucatu (UNESP) (In Memoriam), Brazil;3. Aquaculture Laboratory (LAM), University of São Paulo, Oceanographic Institute, Brazil;4. Neotropical Fish Laboratory (LINEO), São Paulo State University at Ilha Solteira (UNESP), Brazil;5. Faculdade de Engenharia de Ilha Solteira, São Paulo State University at Ilha Solteira (UNESP), Brazil;1. Plymouth Marine Laboratory, The Hoe Plymouth, Prospect Place, Devon, PL1 3DH, UK;2. School of Biology, Sediment Ecology Research Group, Scottish Oceans Institute, University of St Andrews, East Sands, St. Andrews, Fife, KY16 8LB, UK
Abstract:An object-oriented model of environment–mussel aquaculture interactions and mussel carrying-capacity within Lagune de la Grande-Entrée (GEL), Iles-de-la-Madeleine, Québec, was constructed to assist in development of sustainable mussel culture in this region. A multiple box ecosystem model for GEL tied to the output of a hydrodynamic model was constructed using Simile software, which has inherent ability to represent spatial elements and specify water exchange between modelled regions. Mussel growth and other field data were used for model validation. Plackett–Burman sensitivity analysis demonstrated that a variety of bioenergetic parameters of zooplankton and phytoplankton submodels were important in model outcomes. Model results demonstrated that mussel aquaculture can be further developed throughout the lagoon. At present culture densities, phytoplankton depletion is minimal, and there is little food limitation of mussel growth. Results indicated that increased stocking density of mussels in the existing farm will lead to decreased mass per individual mussel. Depending on the location of new farm emplacement within the lagoon, implementation of new aquaculture sites either reduced mussel growth in the existing farm due to depletion of phytoplankton, or exhibited minimum negative impact on the existing farm. With development throughout GEL, an excess of phytoplankton was observed during the year in all modelled regions, even at stocking densities as high as 20 mussels m−3. Although mussels cultured at this density do not substantially impact the ecosystem, their growth is controlled by the flux of phytoplankton food and abundance of zooplankton competitors. This model provides an effective tool to examine expansion of shellfish farming to new areas, balancing culture location and density.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号