首页 | 本学科首页   官方微博 | 高级检索  
     检索      

沉积物硝酸盐异化还原过程的温度敏感性与影响因素——以长江口青草沙水库为例
引用本文:胡晓婷,程吕,林贤彪,刘敏,陆敏,侯立军.沉积物硝酸盐异化还原过程的温度敏感性与影响因素——以长江口青草沙水库为例[J].中国环境科学,2016,36(9):2624-2632.
作者姓名:胡晓婷  程吕  林贤彪  刘敏  陆敏  侯立军
作者单位:1. 华东师范大学地理科学学院, 上海 200062; 2. 华东师范大学, 河口海岸学国家重点实验室, 上海 200062
基金项目:国家自然基金项目(41130525,41371451,41271114)
摘    要:水生态环境中硝酸盐异化还原过程反硝化、厌氧氨氧化和硝酸盐异化还原成铵(DNRA),对氮循环起着重要作用.采用泥浆培养实验,并结合15N同位素示踪技术对长江口青草沙水库沉积物硝酸盐异化还原过程的温度敏感性及影响因子进行了研究.结果表明,原位温度10℃时沉积物中反硝化、厌氧氨氧化和DNRA速率分别是0.18~6.86、0.26~3.16和0.09~0.25μmol N/(kg·h).当培养温度升高到20℃和30℃时,反硝化速率分别是0.43~6.22和0.68~6.56μmol N/(kg·h),平均比10℃时升高了15.7%和21.6%;厌氧氨氧化速率分别是0.61~3.2和0.77~3.54μmol N/(kg·h),平均比10℃时升高了27.8%和42.6%;DNRA速率分别是0.09~0.23和0.1~0.18μmol N/(kg·h),均比10℃时降低了4.2%.沉积物厌氧氨氧化对温度最为敏感,其次是反硝化,均随温度升高而增大;而DNRA最不敏感,随温度升高而减小.相关性分析结果发现有机碳、氨氮、二价铁和硫化物是影响硝酸盐异化还原的主要环境因子.反硝化和厌氧氨氧化硝酸盐还原的贡献分别是34%~71%和28%~49%,而DNRA为2%~17%.青草沙水库沉积物反硝化和厌氧氨氧化过程每年可去除活性氮大约为3.25×103t和1.68×103t,约占库区输入氮的54.17%.

关 键 词:同位素示踪  硝酸盐异化还原  温度敏感性  沉积物  青草沙水库  
收稿时间:2016-01-12

Temperature sensitivity and controlling factors of dissimilatory nitrate reduction processes in sediments of Qingcaosha reservoir,Yangtze Estuary
HU Xiao-ting,CHENG L&#,LIN Xian-biao,LIU Min,LU Min,HOU Li-jun.Temperature sensitivity and controlling factors of dissimilatory nitrate reduction processes in sediments of Qingcaosha reservoir,Yangtze Estuary[J].China Environmental Science,2016,36(9):2624-2632.
Authors:HU Xiao-ting  CHENG L&#  LIN Xian-biao  LIU Min  LU Min  HOU Li-jun
Institution:1. School of Geographical Sciences, East China Normal University, Shanghai 200062, China; 2. Skate Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Abstract:Slurry incubation experiments combinatedwith isotope-tracing techniques were conducted toexaminethe effectsof temperature on dissimilatory nitrate reductionprocesses and reveal associated environmental variables in Qingcaosha reservoir, the Yangtze Estuary.Results indicated that the potential rates of denitrification, anammox and DNRA in thereservoir sediments werein the range of 0.18~6.86, 0.26~3.16and 0.09~0.25μmol N/(kg·h), respectively, at in situ temperature (10℃). The denitrification rates ranged from 0.43to 6.22and from 0.68to 6.56μmol N/(kg·h), increased by mean value of 15.7% at 20℃ and 21.6% 30℃, compared to that in 10℃. Anammox rates varied from 0.61 to 3.2μmol N/(kg·h)at 20℃ and from 0.77 to 3.54μmol N/(kg·h)at 30℃, increased by 27.8% and 42.6%. However, DNRA rates ranged between 0.09 and 0.23μmol N/(kg·h)at 20℃, and from 0.1 to 0.18μmol N/(kg·h)at 30℃, reduced by 4.2% compared to that in 10℃. Anammoxwas most sensitive to changes in the temperature, followed by denitrification, and increased with incrasedtemperature; the DNRA was least sensitive to temperature, decreased with the incrasedtemperature. OC, NH4+, Fe2+ and S2- werefound to have significant influence on these nitrate reduction processes. Denitrification and anammoxcontributed respectively 34%~71% and 28%~49% to the total nitrate reduction, while DNRA only contributed 2%~17% in the Qingcaosha reservoir. Denitrificationand anammoxprocesses were estimated to remove 3.25×103 t/a and 1.68×103 t/a of nitrogen, accounting for 54.17% of the total external nitrogen transported into the reservoir.
Keywords:isotope-tracing techniques  dissimilatory nitrate reduction  temperature sensitivity  sediment  Qingcaosha reservoir  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号