Quantifying the sensitivity of ephemeral streams to land disturbance activities in arid ecosystems at the watershed scale |
| |
Authors: | Ben L. O’Connor Yuki Hamada Esther E. Bowen Mark A. Grippo Heidi M. Hartmann Terri L. Patton Robert A. Van Lonkhuyzen Adrianne E. Carr |
| |
Affiliation: | 1. Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Avenue, Bldg. 240, Argonne, IL, USA
|
| |
Abstract: | Large areas of public lands administered by the Bureau of Land Management and located in arid regions of the southwestern United States are being considered for the development of utility-scale solar energy facilities. Land-disturbing activities in these desert, alluvium-filled valleys have the potential to adversely affect the hydrologic and ecologic functions of ephemeral streams. Regulation and management of ephemeral streams typically falls under a spectrum of federal, state, and local programs, but scientifically based guidelines for protecting ephemeral streams with respect to land-development activities are largely nonexistent. This study developed an assessment approach for quantifying the sensitivity to land disturbance of ephemeral stream reaches located in proposed solar energy zones (SEZs). The ephemeral stream assessment approach used publicly-available geospatial data on hydrology, topography, surficial geology, and soil characteristics, as well as high-resolution aerial imagery. These datasets were used to inform a professional judgment-based score index of potential land disturbance impacts on selected critical functions of ephemeral streams, including flow and sediment conveyance, ecological habitat value, and groundwater recharge. The total sensitivity scores (sum of scores for the critical stream functions of flow and sediment conveyance, ecological habitats, and groundwater recharge) were used to identify highly sensitive stream reaches to inform decisions on developable areas in SEZs. Total sensitivity scores typically reflected the scores of the individual stream functions; some exceptions pertain to groundwater recharge and ecological habitats. The primary limitations of this assessment approach were the lack of high-resolution identification of ephemeral stream channels in the existing National Hydrography Dataset, and the lack of mechanistic processes describing potential impacts on ephemeral stream functions at the watershed scale. The primary strength of this assessment approach is that it allows watershed-scale planning for low-impact development in arid ecosystems; the qualitative scoring of potential impacts can also be adjusted to accommodate new geospatial data, and to allow for expert and stakeholder input into decisions regarding the identification and potential avoidance of highly sensitive stream reaches. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|