1.School of Environmental Science and Engineering,Sun Yat-Sen University,Guangzhou,China;2.School of Atmospheric Sciences,Sun Yat-Sen University,Guangzhou,China;3.Guangzhou Research Institute of Environmental Protection,Guangzhou,China
Abstract:
Surface O3 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NOx-VOC-sensitivity regimes complicates the control-decision making. In this paper, the indicator method was used to establish the relationship between O3 sensitivity and assessment indicators. Six popular ratios indicating ozone-precursor sensitivity, HCHO/NOy, H2O2/ HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz, were evaluated based on the distribution of NOx- and VOC-sensitive regimes. WRF-Chem was used to study a serious ozone episode in fall over the Pearl River Delta (PRD). It was found that the south-west of the PRD is characterized by a VOCsensitive regime, while its north-east is NOx-sensitive, with a sharp transition area between the two regimes. All indicators produced good representations of the elevated ozone hours in the episode on 6 November 2009, with H2O2/HNO3 being the best indicator. The threshold sensitivity levels for HCHO/NOy, H2O2/HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz were estimated to be 0.41, 0.55, 10.2, 14.0, 19.1, and 0.38, respectively. Threshold intervals for the indicators H2O2/HNO3, O3/NOy, O3/NOz, O3/HNO3, and H2O2/NOz were able to identify more than 95% of VOC- and NOx-sensitive grids. The ozone episode on 16 November 16 2008 was used to independently verify the results, and it was found that only H2O2/HNO3 and H2O2/NOz were able to differentiate the ozone sensitivity regime well. Hence, these two ratios are suggested as the most appropriate indicators for identifying fall ozone sensitivity in the PRD. Since the species used for indicators have seasonal variation, the utility of those indicators for other seasons should be investigated in the future work.