摘 要: | 目的为了挖掘大气腐蚀速率与金属化学成分和暴露时间两个影响因素的定量关系,针对数据集特点,提出一种局部保持投影(Locality Preserving Projection)和梯度提升树(Gradient Boosting Decision Trees)结合的大气腐蚀速率预测模型(LPP-GBDT)。方法采用LPP算法对金属化学成分进行降维处理,得到金属化学成分低维特征,然后引入时间因素,并利用GBDT进行建立预测模型。以青岛海洋大气环境下积累的16年内的腐蚀速率数据进行模型性能验证,结果 LPP-GBDT模型测试集平均绝对误差为1.73μm/a,平均绝对百分误差为6.30%。正交化LPP-GBDT模型测试集平均绝对误差为1.21μm/a,平均绝对百分误差为4.42%。结论与多个典型预测模型相比,LPP-GBDT模型基于暴露时间和化学成分因素实现了大气腐蚀速率较为准确的预测,对特定环境下金属选材具有一定的参考价值。
|