首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acid washing and stabilization of an artificial arsenic-contaminated soil.
Authors:Shuzo Tokunaga  Toshikatsu Hakuta
Institution:Green Technology Laboratory, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan. s.tokunaga@aist.go.jp
Abstract:An acid-washing process was studied on a laboratory scale to extract the bulk of arsenic(V) from a highly contaminated Kuroboku soil (Andosol) so as to minimize the risk of arsenic to human health and the environment. The sorption and desorption behavior of arsenic in the soil suggested the possibility of arsenic leaching under acidic conditions. Artificially contaminated Kuroboku soil (2830 mg As/kg soil) was washed with different concentrations of hydrogen fluoride, phosphoric acid, sulfuric acid, hydrogen chloride, nitric acid, perchloric acid, hydrogen bromide, acetic acid, hydrogen peroxide, 3:1 hydrogen chloride-nitric acid, or 2:1 nitric acid-perchloric acid. Phosphoric acid proved to be most promising as an extractant, attaining 99.9% arsenic extraction at 9.4% acid concentration in 6 h. Sulfuric acid also attained high percentage extraction. The arsenic extraction by these acids reached equilibrium within 2 h. Elovich-type equation best described most of the kinetic data for dissolution of soil components as well as for extraction of arsenic. Dissolution of the soil components could be minimized by ceasing acid washing in 2 h. The acid-washed soil was further stabilized by the addition of lanthanum, cerium, and iron(III) salts or their oxides or hydroxides which form insoluble complex with arsenic. Both salts and oxides of lanthanum and cerium were effective in immobilizing arsenic in the soil attaining less than 0.01 mg/l As in the leaching test.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号