首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemically mediated interactions between the red algaPlocamium hamatum (Rhodophyta) and the octocoralSinularia cruciata (Alcyonacea)
Authors:R de Nys  J C Coll  I R Price
Institution:(1) Department of Chemistry and Biochemistry, James Cook University of North Queensland, 4811 Townsville, Queensland, Australia;(2) Department of Botany, James Cook University of North Queensland, 4811 Townsville, Queensland, Australia
Abstract:Interactions between the red algaPlocamium hamatum J. Agardh (Rhodophyta) and other benthic organisms including the alcyonacean soft coralSinularia cruciata (Tixier-Durivault) were investigated on an inshore fringing reef environment in whichP. hamatum was the dominant large fleshy alga. Field observations of sessile reef organisms including octocorals and sponges living in close proximity toP. hamatum revealed that varying degrees of tissue necrosis were suffered by the invertebrates when in physical contact with the alga. In order to establish whether the chemical constituents of the alga, especially chloromertensene, played a role in this necrosis, manipulative field experiments were carried out in the Pelorus Channel, Palm Island group (18°34primeS; 146°29primeE), North Queensland, Australia, in November and December 1988. The first experiment involved the relocation of healthy plants and soft corals into contact and non-contact situations on a mesh grid. In all cases of contact betweenP. hamatum andS. cruciata, the soft coral suffered tissue necrosis (n=6,p=0.0022). The second experiment had the same design, but involved the use of artificial ldquoplantsrdquo both uncoated and coated with natural levels of chloromertensene, in contact withS. cruciata. In all cases of contact with coated treatments, necrosis was observed inS. cruciata (n=4,p=0.025). In cases where uncoated artificial fronds were placed in contact with soft corals,S. cruciata showed minor abrasion effects, but no appreciable necrosis. Coated treatments were not fouled by epiphytes during the experiment and were not consumed by predators. Uncoated treatments were rapidly reduced in size by predation and any remaining material was biofouled. These experiments thus demonstrated that the deleterious effects observed in soft corals in the field were caused by contact with the algaP. hamatum, that these effects were indeed chemically mediated by chloromertensene, and that physical contact without chemical intervention caused no such deleterious effects. This is the first experimental evidence which conclusively demonstrates allelopathy between an alga and other marine organisms and identifies the compound responsible for the observed allelopathic effects.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号