首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Requirement of exogenous inducers for metamorphosis of axenic larvae and buds of Cassiopea andromeda (Cnidaria: Scyphozoa)
Authors:W K Fitt  D K Hofmann  M Wolk  M Rahat
Institution:(1) Lehrstuhl für Spezielle Zoologie, Ruhr Universität, Universitätsstrasse 150, D-4630 Bochum 1, Federal Republic of Germany;(2) Department of Zoology, Hebrew University, 91904 Jerusalem, Israel;(3) Present address: Department of Zoology, University of Georgia, 30602 Athens, Georgia, USA;(4) Present address: Tarshish Street 14, 90610 Ma'ale-Adumin, Israel
Abstract:Planula larvae and asexually-produced buds of the rhizostome scyphozoan Cassiopea andromeda (collected throughout the year in Eilat, Israel) have the ability, under axenic conditions, to attach to a substrate and undergo morphogenetic development to form a polyp (=scyphistoma) in: (1) the presence of unidentified inducers found in the adult habitat and (2) the presence of cefined organic compounds. Axenic planulae and buds were unable to settle and complete metamorphosis in autoclaved artificial or natural seawater from the North Sea when maintained without food, but continued swimming while decreasing in size and protein content, eventually dying within three months. When maintained in autoclaved seawater from the Red Sea, between 25 and 46% of the planulae and 4 and 11% of the buds metamorphosed within 30 d. Axenic solutions of cholera toxin, thyroid stimulating hormone, and pancreatic casein hydrolysate peptides in artificial seawater induced morphogenic development of 20 to 100% of planulae and buds within 2 to 18 d. The natural inducer(s) in Red Sea seawater, though unidentified, may have characteristics similar to the large proteins and small peptide inducers used in this study. Planulae and buds older than 20 d metamorphosed sooner and responded to lower concentrations of pancreatic casein hydrolysate peptides than younger individuals. This may be a physiological mechanism for enhancing metamorphosis and survival in nature. The data show that settlement and metamorphosis can be induced by solutions of cholera toxin and thyroid stimulating hormone, suggesting that, as in mammalian systems, the mechanism of action of these chemicals may involve cyclic adenosine monophosphate (cAMP) as an intermediate messenger. However, dibutyric cAMP, which is capable of passing through membranes and functioning normally inside the cell, did not induce metamorphosis of buds, and the levels of intracellular cAMP in buds and larvae typically increased slowly during induction of metamorphosis, unlike the high and rapid increases associated with cAMP-mediated biochemical events in mammalian cells. These results suggest that the observed cAMP changes seen were associated with metamorphic development, but not with the triggering mechanism.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号