首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工神经网络的矿井通风系统评价研究
引用本文:程磊,杨运良,熊亚选. 基于人工神经网络的矿井通风系统评价研究[J]. 中国安全科学学报, 2005, 15(5): 88-91
作者姓名:程磊  杨运良  熊亚选
作者单位:河南理工大学资源与材料工程系
摘    要:
以矿井通风系统的“安全可靠、经济合理”和其定义所包含的各项内容为依据,从矿井通风动力、通风网络、通风设施、通风质量、通风监测、防灾抗灾能力、通风电耗、通风能力8个方面,确立了16项矿井通风系统评价指标,建立了一个新的矿井通风系统评价指标体系。采用人工神经网络中的BP网络算法,在VisualC++6.0平台上研制开发了矿井通风系统评价BP网络模型的计算机程序。并经过实际生产矿井检验,预测结果与实际完全吻合,说明了笔者所确定的矿井通风系统评价指标体系可以反映矿井通风系统的状况,所采用的BP网络算法正确,可以用来指导实际工作。该计算程序简单,易于操作,有一定的推广应用价值。

关 键 词:通风系统评价  评价指标体系  人工神经网络模型  BP网络模型
修稿时间:2004-11-01

Study of Mine Ventilation System Assessment Based on Artificial Neural Network
CHENG Lei,YANG Yun-liang,XIONG Ya-xuan. Study of Mine Ventilation System Assessment Based on Artificial Neural Network[J]. China Safety Science Journal, 2005, 15(5): 88-91
Authors:CHENG Lei  YANG Yun-liang  XIONG Ya-xuan
Abstract:
Taking the safe, reliable, economical and rational ventilation system and its contents involved as criteria, sixteen assessment indexes of mine ventilation system are determined involving 8 aspects such as mine ventilation power, ventilation network, ventilation equipment, ventilation quality, ventilation monitoring, the capacity of preventing and fighting against disaster, power consumption, and the capacity of ventilation system to form a new assessment index system. A computer program of mine ventilation system assessment BP network model is developed using BP network of the artificial neural network and Visual C 6.0 . When this program is tested in real projects, predicted results are found to be in full compliance with the real condition of the mine. It could conclude that the assessment index system established is rational and the artificial neural network model built is correct, which could be used as the guidance in practical use. The model is simple and easy-to-operate, and has a value to be applied in certain extent.
Keywords:Ventilation system assessment Assessment index system Artificial neural network model BP network model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号