首页 | 本学科首页   官方微博 | 高级检索  
     检索      

预处理方法对香蒲厌氧发酵联产H2-CH4效能的影响
引用本文:杨 洋,夏天明,祝超伟,李鸣晓,魏自民,席北斗,贾 璇.预处理方法对香蒲厌氧发酵联产H2-CH4效能的影响[J].环境科学研究,2014,27(2):164-171.
作者姓名:杨 洋  夏天明  祝超伟  李鸣晓  魏自民  席北斗  贾 璇
作者单位:1.中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
基金项目:国家科技支撑计划项目(2012BAJ21B02)
摘    要:通过厌氧发酵动力学分析、还原糖及其他代谢产物变化情况,结合香蒲微观结构解析,系统研究酸(HCl)、碱(NaOH)、酶(纤维素酶R-10)3种预处理对水生植物厌氧发酵联产H2-CH4的影响. 结果表明:香蒲分别经酸、碱、酶3种预处理后,厌氧发酵联产累积H2、CH4产量及含量均显著提高,c(HCl)、c(NaOH)均为1.0mol/L, w(纤维素酶R-10)(以底物计)为10mg/g时,预处理最佳. 其中1.0mol/L NaOH预处理香蒲效果最佳,φ(H2)(H2含量)达30.09%,累积产H2量(以香蒲干质量计)达11.39mL/g;φ(CH4)(CH4含量)最高达67.48%,累积产CH4量(以香蒲干质量计)达41.87mL/g;还原糖利用率达50.87%,sCOD(溶解性化学需氧量)利用率达66.17%. 纤维素酶预处理后香蒲产CH4能力显著提高,产CH4阶段φ(CH4)最高为71.39%,累积产CH4量达46.32mL/g,还原糖利用率达72.10%. 扫描电镜微观结构分析表明,碱预处理对香蒲纤维素结构破坏程度最大,可有效增加香蒲与微生物接触面积,有利于厌氧发酵联产H2-CH4工艺的快速启动和稳定运行. 

关 键 词:预处理    香蒲    厌氧发酵    H2-CH4联产    动力学分析    扫描电镜(SEM)
收稿时间:2013/5/25 0:00:00
修稿时间:2013/10/10 0:00:00

Effect of Different Pre-Treatment on Hydrogen and Methane Coproduction during Typha Anaerobic Fermentation Process
YANG Yang,XIA Tian-ming,ZHU Chao-wei,LI Ming-xiao,WEI Zi-min,XI Bei-dou and JIA Xuan.Effect of Different Pre-Treatment on Hydrogen and Methane Coproduction during Typha Anaerobic Fermentation Process[J].Research of Environmental Sciences,2014,27(2):164-171.
Authors:YANG Yang  XIA Tian-ming  ZHU Chao-wei  LI Ming-xiao  WEI Zi-min  XI Bei-dou and JIA Xuan
Institution:1.Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China2.College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
Abstract:The influence of acid, alkali or enzyme pretreatments on the co-production of hydrogen and methane during the typha anaerobic process was studied based on anaerobic fermentation kinetics and the evolution of reduced sugar and other metabolites combination with aquatic plant microstructures. The results showed that, after the acid, alkali or enzyme pretreatment, the content of hydrogen and methane significantly increased in anaerobic fermentation process, and the optimum pretreatments were 1.0mol/L HCl, 1.0mol/L NaOH and 10mg/g (TVS) cellulose enzyme R-10, respectively. The best pretreatment of typha was 1.0mol/L NaOH. The hydrogen content was up to 30.09%, the cumulative hydrogen production 11.39mL/g (TVS), the methane content up to 67.48%, the cumulative methane yield 41.87mL/g (TVS), the reduced sugar utilization rate 50.87%, and the sCOD removal rate 66.17% after the best pretreatment. In addition, the methane production ability was significantly improved after enzyme pretreatment as well. For instance, the methane content was up to 71.39% at the methanogenic phase, the accumulated methane production 46.32mL/g (TVS), and the reducing sugar utilization rate up to 72.10%. The results of SEM showed that the cellulose structure of aquatic plants was severely damaged, and the superficial area of plants and microbes increased effectively after alkali pretreatments, which was beneficial to the rapid start-up and stable operation of the co-production process in anaerobic fermentation. 
Keywords:pretreatment  typha  anaerobic fermentation  coproduction of hydrogen and methane  kinetics analysis  Scanning Electron Microscope
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号