首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯网络分类的土壤盐渍化遥感监测
引用本文:海米提·司马依,塔西甫拉提·特依拜. 基于贝叶斯网络分类的土壤盐渍化遥感监测[J]. 新疆环境保护, 2006, 28(1): 9-13
作者姓名:海米提·司马依  塔西甫拉提·特依拜
作者单位:新疆大学资源与环境科学学院,乌鲁木齐,830046
摘    要:贝叶斯网络是一种将贝叶斯概率方法和有向无环图的网络拓扑结构有机结合的概率模型.采用贝叶斯网络分类对具有典型干旱特征的库车县土壤盐渍化情况进行监测,首先应用条件独立性测试原理建立贝叶斯网络结构,把研究区遥感数据进行离散化,然后应用贝叶斯定理作为分类原则,将每个像元分为像元最大概率的类别.研究结果表明该方法来分类6种地类的整体分类精度达到96%,并为该区盐渍地面积,空间分布等特征监测提供较好的依据.

关 键 词:贝叶斯网络  土壤盐渍化  遥感监测
文章编号:1008-2301(2006)01-0009-05
修稿时间:2006-02-17

Remote Sensing Monitoring of Soil Salinization Based on Bayesian Network Classification
Hamit·ISHMEAL,Tashpolat·TEYIP. Remote Sensing Monitoring of Soil Salinization Based on Bayesian Network Classification[J]. Environmental Protection of Xinjiang, 2006, 28(1): 9-13
Authors:Hamit·ISHMEAL  Tashpolat·TEYIP
Abstract:The Bayesian Network is one kind of probabilistic model,which is based on probability theory and graph theory,where random variables are nodes and conditional dependencies are edges in a directed acyclic graph.In this paper,with the application of Bayesian network classifier,soil salinization of Kucha County in arid region was being monitored.First,using the conditional independence test built Bayesian Network structure,dispersitize Remote Sensing data of study area,then applying Bayesian Theorem as a classification principle, classifies every single pixel to a pixel of maximum probability sort.The study results indicate that the classification accuracy was above 95% of this method as well as offered preferable reason of monitoring the proportion,spatial distribution of salinization in study area.
Keywords:Bayesian Network  soil salinization  remote sensing monitoring
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号