首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of Time-Resolved PM2.5 Data in Urban/Suburban Areas of New Jersey
Authors:Nares Chuersuwan  Barbara J Turpin  Charles Pietarinen
Institution:1. Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey , USA;2. Bureau of Air Monitoring, New Jersey Department of Environmental Protection , Trenton , New Jersey , USA
Abstract:ABSTRACT

Time-resolved data is needed for public notification of unhealthful air quality and to develop an understanding of atmospheric chemistry, including insights important to control strategies. In this research, continuous fine particulate matter (PM2.5) mass concentrations were measured with tapered element oscillating microbalances (TEOMs) across New Jersey from July 1997 to June 1998. Data features indicating the influence of local sources and long-distance transport are examined, as well as differences between 1-hr maxima and 24-hr average concentrations that might be relevant to acute health effects. Continuous mass concentrations were not significantly different from filter-collected gravimetric mass concentrations with 95% confidence intervals during any season. Annual mean PM2.5 concentrations from July 1997 to June 1998 were 17.3, 16.4, 14.1, and 15.3 μg/m3 at Newark, Elizabeth, New Brunswick, and Camden, NJ, respectively. Monthly averaged 24- and 1-hr daily maximum PM2.5 concentrations suggest the existence of a high PM2.5 (May-October) and a low PM2.5 (November-April) season.

PM2.5 magnitudes and temporal trends were very similar across the state during high PM2.5 events. In fact, the between-site coefficients of determination (R2) for daily PM2.5 measurements were 84-98% for June and July. Additionally, during the most pronounced PM2.5 episode, PM2.5 concentrations closely tracked the daily maximum 1-hr O3 concentrations. These observations suggest the importance of transport and atmospheric chemistry (i.e., secondary formation) to PM2.5 episodes in New Jersey. The influence of local sources was observed in diurnal concentration profiles and annual average between-site differences. Urban wintertime data illustrate that high 1-hr maximum PM2.5 concentrations can occur on low 24-hr PM2.5 days.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号