首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of Advanced Oxidants Generated Via Ultraviolet Light on a Sequentially Loaded and Regenerated Granular Activated Carbon Biofilter
Authors:James S Dusenbury  Fred S Cannon
Institution:1. U.S. Army TACOM-TARDEC , Warren , Michigan , USA;2. The Pennsylvania State University , University Park , Pennsylvania , USA
Abstract:Abstract

The objective of this research was to investigate a sequentially loaded and regenerated granular activated carbon (GAC) biofilter system and to determine whether regenerative ozonation/advanced oxidation could improve the removal and biodegradation of a volatile organic compound from a contaminated airstream. Bench-scale reactors were constructed to operate in a manner analogous to a commercially available system manufactured by Terr-Aqua Environmental Systems (only with longer contact time). The GAC system consisted of two GAC biofilter beds that operated in a cyclical manner. On a given day, the first GAC bed adsorbed methyl isobutyl ketone from a simulated waste airstream, while the second bed underwent regeneration; then on the next day, the second bed was in the adsorption mode while the first was regenerated.

Three bench-scale systems were used to compare the performance under three operating conditions: (1) ozone/ associated oxidant regeneration of a GAC biofilter system that was seeded with microorganisms from a field site, (2) a humid air regeneration of a seeded GAC biofilter, and (3) a humid air regeneration of an unseeded GAC biofilter. For the advanced oxidant regenerated GAC biofilter, a maximum removal efficiency of >95% was achieved with an empty bed contact time of 148 sec and an influent concentration of 125 ppm methyl isobutyl ketone, and 90–95% was achieved at 148-sec empty bed contact time and a 1150-ppm influent.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号