首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Role of conductive spreader layer in reducing surface temperature of HMA pavements
Abstract:Rutting is a common type of shear failure-related deformation in asphalt (hot mix asphalt, HMA) pavements. It occurs over time as a result of slow, repeated heavy loads from vehicles moving along the wheel path. This problem is most noticeable when the pavement is at a high temperature and its stiffness is the lowest. Previous investigations have concluded that flowing water in pipes embedded in the pavement leads to a reduction in surface temperature, and consequently rutting. However, the thermophysical properties of HMA limit the cooling effect to a small region immediately around the pipe. It is proposed that the area of cooling be enhanced by adding a highly conductive spreader layer below the pavement in conjunction with the pipe. A theoretical design optimisation has been carried out by exploring different aspects of the spreader layer–pipe spacing (W), depth of the pipe–spreader (D), spreader thickness (t s), thermal conductivity (k s) and variation in the boundary conditions. Finite element modelling predicts that a properly designed, highly conductive spreader layer will lead to a significant reduction in surface temperature with a minimal piping network leading to an extended functional life of the HMA pavement.
Keywords:sustainable infrastructure  sustainable transport engineering  life-cycle engineering  rutting  asphalt
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号