首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Urban meteorological modelling for nuclear emergency preparedness
Authors:Baklanov Alexander  Sørensen Jens Havskov  Hoe Steen Cordt  Amstrup Bjarne
Institution:Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, Denmark. alb@dmi.dk
Abstract:The main objectives of the current EU project “Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure” (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Øresund region.The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision–support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA).Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI-HIRLAM NWP model data provided to DEMA by DMI four times a day under operational surveillance and covering Denmark and surroundings. The integration of DERMA in ARGOS is effectuated through automated on-line digital communication and exchange of data. The calculations are carried out in parallel for each NWP model to which DMI has access, thereby providing a mini-ensemble of dispersion forecasts for the emergency management.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号