首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Abiotic constraints eclipse biotic resistance in determining invasibility along experimental vernal pool gradients.
Authors:Fritz Gerhardt  Sharon K Collinge
Institution:Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. gerhardt@sover.net
Abstract:Effective management of invasive species requires that we understand the mechanisms determining community invasibility. Successful invaders must tolerate abiotic conditions and overcome resistance from native species in invaded habitats. Biotic resistance to invasions may reflect the diversity, abundance, or identity of species in a community. Few studies, however, have examined the relative importance of abiotic and biotic factors determining community invasibility. In a greenhouse experiment, we simulated the abiotic and biotic gradients typically found in vernal pools to better understand their impacts on invasibility. Specifically, we invaded plant communities differing in richness, identity, and abundance of native plants (the "plant neighborhood") and depth of inundation to measure their effects on growth, reproduction, and survival of five exotic plant species. Inundation reduced growth, reproduction, and survival of the five exotic species more than did plant neighborhood. Inundation reduced survival of three species and growth and reproduction of all five species. Neighboring plants reduced growth and reproduction of three species but generally did not affect survival. Brassica rapa, Centaurea solstitialis, and Vicia villosa all suffered high mortality due to inundation but were generally unaffected by neighboring plants. In contrast, Hordeum marinum and Lolium multiflorum, whose survival was unaffected by inundation, were more impacted by neighboring plants. However, the four measures describing plant neighborhood differed in their effects. Neighbor abundance impacted growth and reproduction more than did neighbor richness or identity, with growth and reproduction generally decreasing with increasing density and mass of neighbors. Collectively, these results suggest that abiotic constraints play the dominant role in determining invasibility along vernal pool and similar gradients. By reducing survival, abiotic constraints allow only species with the appropriate morphological and physiological traits to invade. In contrast, biotic resistance reduces invasibility only in more benign environments and is best predicted by the abundance, rather than diversity, of neighbors. These results suggest that stressful environments are not likely to be invaded by most exotic species. However, species, such as H. marinum, that are able to invade these habitats require careful management, especially since these environments often harbor rare species and communities.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号