首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and investigation of the effects on two fish cell lines
Authors:Zurita Jorge L  Jos Angeles  Cameán Ana M  Salguero Manuel  López-Artíguez Miguel  Repetto Guillermo
Institution:National Institute of Toxicology and Forensic Sciences, Av. Dr. Fedriani s/n, 41009 Seville, Spain.
Abstract:Sodium monofluoroacetate (compound 1080) is one of the most potent pesticides. It is also a metabolite of many other fluorinated compounds, including anticancer agents, narcotic analgesics, pesticides or industrial chemicals. Other sources of water contamination are the atmospheric degradation of hydrofluorocarbons and hydrochlorofluorocarbons. However, there is little information available about the adverse effects of sodium fluoroacetate in aquatic organisms. Firstly, the bacterium Vibrio fischeri (decomposer), the alga Chlorella vulgaris (1st producer) and the cladoceran Daphnia magna (1st consumer) were used for the ecotoxicological evaluation of SMFA. The most sensitive models were C. vulgaris and D. magna, with a NOAEL of 0.1 and an EC50 of 0.5 mM at 72 h, respectively. According to the results after the acute exposure and due to its high biodegradation rate and low bioaccumulation potential, sodium fluoroacetate is most unlikely to produce deleterious effects to aquatic organisms. Secondly, two fish cell lines were employed to investigate the effects and mechanisms of toxicity in tissues from 2nd consumers. The hepatoma fish cell line PLHC-1 was more sensitive to SMFA than the fibroblast-like fish cell line RTG-2, being the uptake of neutral red the most sensitive bioindicator. Lysosomal function, succinate dehydrogenase and acetylcholinesterase activities were inhibited, glucose-6-phosphate dehydrogenase activity was particularly stimulated, and metallothionein and ethoxyresorufin-O-deethylase levels were not modified. Intense hydropic degeneration, macrovesicular steatosis and death mainly by necrosis but also by apoptosis were observed. Moreover, sulphydryl groups and oxidative stress could be involved in PLHC-1 cell death induced by SMFA more than changes in calcium homeostasis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号