首页 | 本学科首页   官方微博 | 高级检索  
     

基于EWT-FIG和ORELM模型的风速多步区间预测
引用本文:曾云,殷豪,刘哲. 基于EWT-FIG和ORELM模型的风速多步区间预测[J]. 防灾减灾工程学报, 2018, 0(4): 6-13
作者姓名:曾云  殷豪  刘哲
作者单位:广东工业大学自动化学院,广东广州 510006
基金项目:广东省科技计划资助项目(2016A010104016) ;广东电网公司科技项目(GDKJQQ20152066)。
摘    要:针对风速预测具有较强的不确定性,提出了一种经验小波变换一模糊信息粒化和变异鲁棒极限学习机组成的短期风速区间预测模型。该模型采用经验小波变换将原始风速分解为若千个模态分量和一个剩余量,并对所有分量进行重构,为了缩小预测区间范围,仅对重构后的剩余量进行模糊粒化,根据需求提取每个窗口的最大值、平均值和最小值,然后对极限学习机进行优化,最后对所有分量建立离群鲁棒极限学习机预测模型,叠加预测值实现风速多步区间预测。实际算例表明:所提多步区间预测方法能有效跟踪风速变化,具有较高的预测精度和可靠的区间预测效果。

关 键 词:经验小波变换一模糊信息粒化;极限学习机;离群鲁棒极限学习机;风速预测;多步区间预测

Wind speed multi - step interval prediction based onEWT- FIG and OREI M model
ZENG Yun,YIN Hao,LIU Zhe. Wind speed multi - step interval prediction based onEWT- FIG and OREI M model[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 0(4): 6-13
Authors:ZENG Yun  YIN Hao  LIU Zhe
Affiliation:College of Automation, Guangdong University of Technology Guangzhou Guangdong 510006 , China
Abstract:For the strong uncertainty of the wind speed forecasting, a short-term wind speed intervalforecasting model composed of empirical wavelet transform-fuzzy information granulation( EWT -FIG ) and outlier-robust extreme learning machine ( ORELM ) is proposed. The model uses EWT todecompose the original wind speed into several model components and a residual, and reconstructs allcomponents. Fuzzy information granulation of the reconstructed residual is made in order to narrow theprediction range. The minimum, average and maximum value of each window are extracted accordingto the need. Then, the extremelearning machine ( ELM) is optimized. Finally, the ORELM predic-tion model is established for all components, and the predicted value is superimposed to realize windspeed multi-step interval prediction. Practical examples show that the proposed multi-step intervalprediction method can effectively track changes in wind speed, and has higher prediction accuracyand reliable interval prediction effect.
Keywords:
点击此处可从《防灾减灾工程学报》浏览原始摘要信息
点击此处可从《防灾减灾工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号