首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Autonomous real-time adaptive management of soil salinity using a receding horizon control algorithm: a pilot-scale demonstration
Authors:Park Yeonjeong  Harmon Thomas C
Institution:School of Engineering, University of California, 5200 North Lake Rd Merced, CA 95343, USA. ypark@ucmerced.edu
Abstract:Soil salinization is a potentially negative side effect of irrigation with reclaimed water. While optimization schemes have been applied to soil salinity control, these have typically failed to take advantage of real-time sensor feedback. This study incorporates current soil observation technologies into the optimal feedback-control scheme known as Receding Horizon Control (RHC) to enable successful autonomous control of soil salinization. RHC uses real-time sensor measurements, physically-based state prediction models, and optimization algorithms to drive field conditions to a desired environmental state by manipulating application rate or irrigation duration/frequency. A simulation model including the Richards equation coupled to energy and solute transport equations is employed as a state estimator. Vertical multi-sensor arrays installed in the soil provide initial conditions and continuous feedback to the control scheme. An optimization algorithm determines the optimal irrigation rate or frequency subject to imposed constraints protective of soil salinization. A small-scale field test demonstrates that the RHC scheme is capable of autonomously maintaining specified salt levels at a prescribed soil depth. This finding suggests that, given an adequately structured and trained simulation model, sensor networks, and optimization algorithms can be integrated using RHC to autonomously achieve water reuse and agricultural objectives while managing soil salinization.
Keywords:Soil salinity control  Receding horizon control  Irrigation scheduling  adaptive management  Real-time sensor data  Autonomous feedback control  Reclaimed water reuse
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号