首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparisons of coarse-mode aerosol nitrate and ammonium at two polluted coastal sites
Institution:1. College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;2. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China;3. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
Abstract:Direct atmospheric fixed-nitrogen deposition can contribute to eutrophication in coastal and estuarine waters and can be enhanced by heterogeneous reactions between gaseous atmospheric nitrogen species and aerosol sea salt, which increase deposition rates. Size-segregated aerosol samples were collected from two coastal sites: Weybourne, England and Mace Head, Ireland. Major-ion aerosol concentrations were determined and temporal patterns were interpreted with the use of air-mass back trajectories. Low levels of terrestrially derived material were seen during periods of clean, onshore flow, with respective concentration ranges for nitrate and ammonium of 0.47–220 and below detection limit to 340 nmol m?3. Corresponding levels of marine derived material during these periods were high, with sodium concentrations ranging from 39 to 1400 nmol m?3. Highest levels of terrestrially derived material were seen during polluted, offshore flow, where the air had passed recently over strong source regions of the UK and northern Europe, with concentration ranges of nitrate and ammonium of 5.6–790 and 9.7–1000 nmol m?3, respectively. During polluted flow ~40–60% of the nitrate was found in the coarse mode (>1 μm diameter) and under clean marine conditions almost 100% conversion was seen. In addition, our data suggests strong evidence for dissolution/coagulation processes that also shift nitrate to the coarse mode. Furthermore, such processes are thought also to give rise to the size-shifting of aerosol ammonium, since significant coarse-mode fractions of this species (~19–45%) were seen at both sites. A comparison of the relative importance of nitrate and ammonium in the overall dry deposition of inorganic fixed-nitrogen at each site indicates that at Weybourne the mass-weighted dry deposition velocity of the latter is around double that seen at Mace Head with its resultant contribution to the overall inorganic nitrogen dry flux exceeding that of nitrate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号