首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sampled Monte Carlo uncertainty analysis for photochemical grid models
Institution:1. Department of Psychology, Loyola Marymount University, Los Angeles, CA 90045, United States;2. Department of Psychology, Lehigh University, Bethlehem, PA 18015, United States
Abstract:This study reports on the development and testing of a method of quantifying the uncertainties in concentration predictions by a complex photochemical grid model (PGM), using a modification of the basic Monte Carlo method (MCM). The computationally intensive aspects of applying a full MCM to hundreds of PGM inputs and model parameters is replaced by a highly restricted sampling approach that exploits the spatial persistence found in predicted concentration fields. The sampling approach to the MCM is being explored as an efficient approach to assess the uncertainty in the differences in predicted maximum ozone concentration between base case and control scenarios. The MCM is applied to several dozen surface cells, with the goal of sampling the spatial pattern of uncertainty in the PGM-predicted differences in surface ozone concentration fields between a pair of base and control scenarios. The uncertainty in model inputs and parameters is simulated using several types of stochastic models. These stochastic models are driven using Latin hypercube sampling (LHS) to generate a non-redundant ensemble of alternative model inputs. Preliminary testing of the sampled MCM approach was conducted using the UAM-IV PGM on the New York ozone attainment modeling domain for the 6–8 July 1988 ozone episode. One hundred alternative concentration estimates were generated for a base scenario and for control scenarios representing 50%, 10% and 5% reduction of NOx emissions. The upper and lower bounds of the concentration difference ensemble that define a 95% confidence range were spatially interpolated from 27 monitoring sites to the full (surface) modeling domain, using the field of zero uncertainty (ZU) concentration differences. For the 50% NOx control scenario, predicted increases in peak ozone concentration smaller than 20 ppb were generally not significant from zero. By contrast, predicted decreases in peak ozone greater than 10 ppb were usually significant. For a control scenario with a small 5% NOx reduction, predicted concentration differences and confidence intervals were much smaller, but predicted changes in peak ozone were significant at a number of sample cells.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号