首页 | 本学科首页   官方微博 | 高级检索  
     检索      

模拟珠江河网的污染物通量及外源输入对入河口通量的贡献
引用本文:胡嘉镗,李适宇.模拟珠江河网的污染物通量及外源输入对入河口通量的贡献[J].环境科学学报,2012,32(4):828-835.
作者姓名:胡嘉镗  李适宇
作者单位:1. 中山大学环境科学与工程学院广东省环境污染控制与修复技术重点实验室,广州510275/加拿大达尔豪斯大学海洋学院,新斯科舍哈利法克斯B3H4J1
2. 中山大学环境科学与工程学院广东省环境污染控制与修复技术重点实验室,广州,510275
基金项目:广东省近岸海洋综合调查与评价(908专项)专题"珠江口主要环境问题分析与对策"(No.GD908-02-03)
摘    要:基于一维河网与三维河口耦合水质模型,模拟计算了2000年珠江上游输入河网以及河网输入河口的碳质生化需氧量(CBOD)、氨氮(NH4)、硝态氮与亚硝态氮(NO3)和无机磷(IP)等污染物通量,并结合数值实验,量化了外源输入(包括入河网污染物通量与河网污染负荷)对入河口污染物通量对河网区的贡献.研究结果表明,河网区的污染物通量由入河网通量与河网污染负荷共同控制,通量分配具有显著的空间差异;上游各水系中,以西江的通量最大,约占入河网通量的71%~81%;8个入海口门中,以虎门、磨刀门的通量最大,两者共承接超过一半的入河口通量.此外,数值实验表明,入河网通量与河网污染负荷对CBOD、氨氮的入河口通量均有显著贡献,而硝态氮与亚硝态氮、IP的入河口通量则主要来自入河网通量;磨刀门、虎门分别是入河网通量、河网污染负荷最主要的输出口门.基于模型,亦针对入河口CBOD、氨氮通量对河网污染负荷的响应关系进行了探讨.

关 键 词:珠江三角洲河网  物质通量  数值模拟  碳质生化需氧量  无机氮  无机磷
收稿时间:2011/6/19 0:00:00
修稿时间:2011/8/11 0:00:00

Modeling the pollutant flux in the Pearl River network and the contribution of external waste loads to the riverine flux
HU Jiatang and LI Shiyu.Modeling the pollutant flux in the Pearl River network and the contribution of external waste loads to the riverine flux[J].Acta Scientiae Circumstantiae,2012,32(4):828-835.
Authors:HU Jiatang and LI Shiyu
Institution:1. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun-Yat Sen University, Guangzhou 510275;2. Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun-Yat Sen University, Guangzhou 510275
Abstract:A 1-D and 3-D coupled water quality model was used to simulate the annual pollutant flux, including carbonaceous biochemical oxygen demand (CBOD), ammonium (NH4), nitrate plus nitrite (NO3) and inorganic phosphorus (IP), of the Pearl River network and the estuary in 2000.Numerical experiments were conducted to quantify the contribution of external waste loads (including both the waste loads from the upstream rivers and discharged from the Pearl River Delta Region) to the riverine pollutant fluxes.The results indicate that pollutant fluxes in the river network, showing pronounced spatial variability, are controlled by the combination of the upstream fluxes and waste loads.Among the upstream rivers, the West River is the largest input to the upstream fluxes, with 71%~81% of the total; among the eight river outlets, Humen and Modaomen are the two largest receivers of the riverine fluxes, with the sum more than 50% of the total.Furthermore, numerical experiments suggest that the upstream fluxes and waster loads both have a significant contribution to the riverine fluxes of CBOD and NH4, whereas the riverine fluxes of NO3 and IP are primarily fed by the upstream fluxes; Modaomen and Humen appear to be the largest receivers of the upstream fluxes and the water loads, respectively.Based on the model, the response of the riverine fluxes of CBOD and NH4 to the waste loads was also investigated.
Keywords:Pearl River network  material flux  numerical simulation  carbonaceous biochemical oxygen demand  inorganic nitrogen  inorganic phosphorus
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号