Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies |
| |
Authors: | Qian Yao Hua Zhang Jun Wu Liming Shao Pinjing He |
| |
Affiliation: | (1) Post Graduate Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar, 388 120 Gujarat, India;(2) M. B. Patel Science College, Anand-388 001, Gujarat, India; |
| |
Abstract: | Batch biosorption experiments were conducted to remove Cr(III) from aqueous solutions using activated sludge from a sewage treatment plant. An investigation was conducted on the effects of the initial pH, contact time, temperature, and initial Cr(III) concentration in the biosorption process. The results revealed that the activated sludge exhibited the highest Cr(III) uptake capacity (120 mg·g−1) at 45°C, initial pH of 4, and initial Cr(III) concentration of 100 mg·L−1. The biosorption results obtained at various temperatures showed that the biosorption pattern accurately followed the Langmuir model. The calculated thermodynamic parameters, ΔGo° ( − 0.8–4.58 kJ·mol−1), ΔH° (15.6–44.4 kJ·mol−1), and ΔS° (0.06–0.15 kJ·mol−1·K−1) clearly indicated that the biosorption process was feasible, spontaneous, endothermic, and physical. The pseudo first-order and second-order kinetic models were adopted to describe the experimental data, which revealed that the Cr(III) biosorption process conformed to the second-order rate expression and the biosorption rate constants decreased with increasing Cr (III) concentration. The analysis of the values of biosorption activation energy (E a = −7 kJ·mol−1) and the intraparticle diffusion model demonstrated that Cr(III) biosorption was film-diffusion-controlled. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|