首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gene flow and local adaptation in a sunfish-salamander system
Authors:Andrew Storfer
Institution:(1) Center for Ecology, Evolution and Behavior T.H. Morgan School of Biological Sciences 101 T.H. Morgan Building, University of Kentucky Lexington, KY 40506-0225, USA, US
Abstract:There is increasing evidence that populations may not be well adapted to their local environments, and as a result, recent interest has focused on understanding factors that constrain adaptive evolution. This study presents data suggesting gene flow may constrain the ability of larvae of the streamside salamander Ambystoma barbouri to avoid predation by fish via escape behavior and life history tactics. Streamside salamander larvae face conflicting selection pressures in different streams. Some streams are ephemeral, where larvae should be active to feed, grow, and reach metamorphosis before stream drying. Other streams contain predatory fish, where larvae should be generally inactive to avoid predation. Previous work has shown that streamside salamander larvae exhibit ineffective antipredator behavior by having inappropriately high activity levels with fish, resulting in high predation in laboratory and field experiments. This study investigated the possibility that gene flow from larvae in ephemeral habitats may reduce the escape performance of larvae from populations with fish and alter their life history characteristics to increase their susceptibility to fish predation. I assayed escape behavior (speed, acceleration, and duration of escape) and life history characteristics (hatching date, size, stage) associated with predator avoidance among laboratory-reared larvae from four populations. As predicted, two populations (one with fish and the other fishless and ephemeral) connected by gene flow were not significantly different in almost all assays. In contrast, larvae from an isolated population with fish had significantly stronger escape behaviors and delayed hatching than both an isolated population that lacked a history of fish co-occurrence and the population with fish but gene flow from a fishless population. These results support theory suggesting that gene flow can constrain adaptive evolution. Received: 22 February 1999 / Received in revised form: 4 April 1999 / Accepted: 26 April 1999
Keywords:Gene flow  Local adaptation  Life history  Ambystoma barbouri
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号