首页 | 本学科首页   官方微博 | 高级检索  
     

基于ICEEMDAN和MC-CNN的矿山声发射信号识别分类方法
引用本文:谢学斌,王小平,刘涛. 基于ICEEMDAN和MC-CNN的矿山声发射信号识别分类方法[J]. 中国安全生产科学技术, 2022, 18(2): 113-118. DOI: 10.11731/j.issn.1673-193x.2022.02.017
作者姓名:谢学斌  王小平  刘涛
作者单位:(中南大学 资源与安全工程学院,湖南 长沙 410083)
基金项目:* 基金项目: 国家自然科学基金项目(52174140);广西重点研发计划项目(AB18294004)
摘    要:为精准识别地下矿山声发射事件,采用基于改进的完全集合经验模态分解模型(ICEEMDAN)和多通道卷积神经网络(MC-CNN)模型对声发射信号进行处理后得到分量图,根据各通道输入分量峭度值赋予不同权重,并利用卷积神经网络对输入数据进行训练,最终采用五折交叉实验方法验证该分类识别方法的可行性及有效性.结果表明:基于ICEE...

关 键 词:声发射事件  模式识别  改进的完全集合经验模态分解  多通道卷积神经网络

Recognition and classification methods of mine acoustic emission signals based on ICEEMDAN and MC-CNN
XIE Xuebin,WANG Xiaoping,LIU Tao. Recognition and classification methods of mine acoustic emission signals based on ICEEMDAN and MC-CNN[J]. Journal of Safety Science and Technology, 2022, 18(2): 113-118. DOI: 10.11731/j.issn.1673-193x.2022.02.017
Authors:XIE Xuebin  WANG Xiaoping  LIU Tao
Affiliation:(School of Resource and Safety Engineering,Central South University,Changsha Hunan 410083,China)
Abstract:In order to accurately identify the acoustic emission events in underground mines,the acoustic emission signals are processed based on the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and multi-channel convolutional neural network (MC-CNN) model,and then intrinsic mode function are obtained.Different weights are given according to the kurtosis values of the input components in each channel,and the input data are trained by the convolutional neural network.Finally,the feasibility and effectiveness of the classification and identification method are verified by the Five-fold cross experiment method.The results show that the classification recognition accuracy based on ICEEMDAN and MC-CNN model is 97.64%.Compared with other traditional recognition methods,it can accurately and effectively classify the acoustic emission signals of underground mines,and significantly improve the waveform recognition.
Keywords:acoustic emission (AE) event   pattern recognition   improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN)   multi-channel convolutional neural network (MC-CNN)
点击此处可从《中国安全生产科学技术》浏览原始摘要信息
点击此处可从《中国安全生产科学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号