首页 | 本学科首页   官方微博 | 高级检索  
     

基于HMM和DT的无人机异常检测方法
引用本文:张洪海,周锦伦,于文娟,刘皞,钟罡. 基于HMM和DT的无人机异常检测方法[J]. 中国安全生产科学技术, 2022, 18(3): 193-198. DOI: 10.11731/j.issn.1673-193x.2022.03.029
作者姓名:张洪海  周锦伦  于文娟  刘皞  钟罡
作者单位:(南京航空航天大学 民航学院,江苏 南京 211106)
基金项目:* 基金项目: 国家自然科学基金项目(71971114);南京航空航天大学研究生创新基地(实验室)开放基金项目(kfjj20200716)
摘    要:为了实时检测无人机异常状态,提出基于隐马尔可夫模型(Hidden Markov Model,HMM)和决策树(Decision Tree,DT)的无人机异常检测方法(HMMDT).首先根据异常致因将无人机异常分为干扰异常和硬件异常;然后结合HMM和DT建立无人机异常检测模型,定义无人机异常度衡量异常状态的严重程度,确定...

关 键 词:无人机  异常检测  隐马尔可夫模型  监督学习  决策树

Anomaly detection method of UAV based on hidden Markov model and decision tree
ZHANG Honghai,ZHOU Jinlun,YU Wenjuan,LIU Hao,ZHONG Gang. Anomaly detection method of UAV based on hidden Markov model and decision tree[J]. Journal of Safety Science and Technology, 2022, 18(3): 193-198. DOI: 10.11731/j.issn.1673-193x.2022.03.029
Authors:ZHANG Honghai  ZHOU Jinlun  YU Wenjuan  LIU Hao  ZHONG Gang
Affiliation:(College of Civil Aviation,Nanjing University of Aeronautics & Astronautics,Nanjing Jiangsu 211106,China)
Abstract:In order to detect the UAV anomaly in real time,a UAV anomaly detection method (HMMDT) based on the hidden Markov model (HMM) and decision tree (DT) was proposed.Firstly,the UAV anomaly was divided into interference anomaly and hardware anomaly according to the anomaly causes.Secondly,the UAV anomaly detection model was established by combining HMM and DT,Then the UAV anomaly degree was defined to measure the severity of anomaly state,and its threshold was determined as the anomaly classification standard.Finally,the Jingwei 600Pro UAV was used to verify the method.The recall rate and precision of anomaly detection by the method reached 92.9% and 97.2% respectively,and the recognition accuracy of hardware anomaly reached 88.2%.The results showed that compared with the traditional anomaly detection methods,this method could meet the needs of UAV anomaly detection in real time with higher detection accuracy and smaller time complexity.
Keywords:unmanned aerial vehicle (UAV)   anomaly detection   hidden Markov model (HMM)   supervised learning   decision tree (DT)
点击此处可从《中国安全生产科学技术》浏览原始摘要信息
点击此处可从《中国安全生产科学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号