摘 要: | 为解决传统瓦斯浓度预测方法预测精度低和适用性不强等问题,提出运用卷积神经网络(CNN)提取瓦斯浓度时间序列的变化趋势及局部关联特征,应用门自适应矩估计(Adam)优化的控循环单元神经网络(GRU),在关联特征基础上进行时序性预测的组合方法,并以铜川玉华煤矿监测数据为样本,对比CNN-GRU组合模型、传统机器学习模型LSTM和GRU模型的预测效果。研究结果表明:CNN-GRU模型的预测精度和收敛速度均优于LSTM和GRU模型;CNN-GRU平均绝对误差和均方根误差分别可降低至0.042,0.006,运行效率分别提高59.15%,35.04%,研究结果可为矿井瓦斯灾害防治提供依据。
|