首页 | 本学科首页   官方微博 | 高级检索  
     

多特征融合与注意力机制的中文文本关系抽取
作者单位:;1.广东石油化工学院计算机学院
摘    要:
在中文关系抽取任务中,数据稀疏和噪声传播问题是其研究难点。基于此,提出了在文本特征组织方面融合位置特征、最短依存特征和N-gram特征等多元特征,并提升关键性特征的权重,以缓解传统词特征的数据稀疏问题。这种组合特征进一步改善了文本中噪声传播问题,提高了句法特征在稀疏性问题下的可靠性。此外,在传统的双向LSTM神经网络中加入注意力机制,使模型更关注较为重要的特征,降低噪声对抽取任务的影响。在人物关系公开语料集上进行实验,结果表明采用该方法进行中文文本关系抽取的效果较好,并为信息抽取、知识图谱等领域提供了方法支持。

关 键 词:依存句法分析  N-gram  关系抽取  双向LSTM  注意力机制

Research on Extraction Method of Text Entity Relations Based on Multi-feature Fusion and Attention Mechanism
Abstract:
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号