首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Can intensive management increase carbon storage in forests?
Authors:Paul Schroeder
Institution:(1) NSI Technology Services Corp., US EPA Environmental Research Laboratory, 200 SW 35th St., 97330 Corvallis, Oregon, USA
Abstract:A possible response to increasing atmospheric CO2 concentration is to attempt to increase the amount of carbon stored in terrestrial vegetation. One approach to increasing the size of the terrestrial carbon sink is to increase the growth of forests by utilizing intensive forest management practices. This article uses data from the literature and from forest growth and yield models to analyze the impact of three management practices on carbon storage: thinning, fertilization, and control of competing vegetation. Using Douglas-fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda) as example species, results from experiments with computer simulation models suggest that, for these two species, thinning generally does not increase carbon storage and may actually cause a decrease. The exception is thinning of very dense young stands. Fertilization generally increases carbon storage, although the response can be quite variable. The largest gains in carbon storage are likely to come from fertilizing lower-quality sites and from fertilizing thinned or less dense stands. Forests usually show increased growth in response to fertilization over a wide range of ages. Simulation of the growth of loblolly pine indicates that controlling competing vegetation at an early age helps to maximize stand growth and carbon storage. The research described in this article has been funded by the US Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, Oregon, through contract number 68-C8-0006 to NSI Technology Inc. It has been subjected to the agency’s peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Keywords:Carbon storage  Climate change  Forest management  Douglas-fir  Loblolly pine
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号