首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gaseous nitrogen emissions and mineral nitrogen transformations as affected by reclaimed effluent application
Authors:Master Y  Laughlin R J  Shavit U  Stevens R J  Shaviv A
Institution:Faculty of Agricultural Engineering, Technion-IIT, Haifa 32000, Israel. master@tx.technion.ac.il
Abstract:Irrigation with reclaimed effluent (RE) is essential in arid and semiarid regions. Reclaimed effluent has the potential to stimulate gaseous N losses and affect other soil N processes. No direct measurements of the N2 and N2O emissions from Mediterranean soils have been conducted so far. We used the 15N gas flux method in a field and a laboratory experiment to study the effect of RE irrigation on gaseous N losses and other N transformations in a Grumosol (Chromoxerert) soil. The fluxes of N2, N2O, and NH3 were measured from six Grumosol lysimeters following application of either fresh water or RE. The N fertilizer was applied either as 15NH4 or 15NO3. Only up to 0.3% from the applied N fertilizer was lost as N2O + NH3. Reclaimed effluent enhanced the losses of NH3, but did not affect those of N2O. Nitrification and denitrification were equally important to N2O production. Laboratory incubations were performed to both confirm the influence of the irrigation water type and to test the effect of moisture content. Significant quantities of N2 and N2O (up to 3.1% of the applied fertilizer) were emitted from saturated soils. Reclaimed effluent application did not induce higher N2O emissions, yet significantly more (approximately 33%) N2 was emitted from RE-irrigated soils. Denitrification contributed up to 75% of the N2O amounts emitted from saturated soils. Reclaimed effluent application inhibited nitrification in the Grumosol by 15 to 25% and induced NO2 accumulation in soils incubated at a field-capacity moisture content.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号