首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dissolution of different zinc salts and Zn uptake by Sedum alfredii and maize in mono- and co-cropping under hydroponic culture
Authors:Cheng'ai Jiang  Qitang Wu  Shucai Zeng  Xian Chen  Zebin Wei and Xinxian Long
Institution:1. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
2. College of Forestry, South China Agricultural University, Guangzhou 510642, China
Abstract:Previous soil pot and field experiments demonstrated that co-cropping the hyperaccumulator Sedum alfredii with maize increased Zn phytoextraction by S. alfredii and decreased Zn uptake by maize shoots. This hydroponic experiment was conducted to investigate whether the facilitation of Zn phytoextraction by S. alfredii resulted from improved dissolution in this co-cropping system and its relation to root exudates. S. alfredii and maize were mono- and co-cropped (without a root barrier) in nutrient solution spiked with four Zn compounds, ZnS, ZnO, Zn3(PO4)2 and 5Zn·O2CO3·4H2O (represented as ZnCO3) at 1000 mg/L Zn for 15 days without renewal of nutrient solution after pre-culture. The root exudates were collected under incomplete sterilization and analyzed. The results indicated that the difference in Zn salts had a greater influence on the Zn concentration in maize than for S. alfredii, varying from 210–2603 mg/kg for maize shoots and 6445–12476 mg/kg for S. alfredii in the same order: ZnCO3 > ZnO > Zn3(PO4)2 > ZnS. For the four kinds of Zn sources in this experiment, co-cropping with maize did not improve Zn phytoextraction by S. alfredii. In most cases, compared to co-cropped and mono-cropped maize, mono-cropped S. alfredii resulted in the highest Zn2+ concentration in the remaining nutrient solution, and also had a higher total concentration of low molecular weight organic acids (LMWOA) and lower pH of root exudation. Root exudates did partly influence Zn hyperaccumulation in S. alfredii.
Keywords:zinc compounds  dissolution  co-cropping  root exudates  hydroponic
本文献已被 CNKI 维普 万方数据 ScienceDirect 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号